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Abstract—Adaptive bitrate video streaming is a widely-used
technology for mobile video streaming over HTTP. In this work,
we study a crowdsourced video streaming framework, which
enables nearby mobile users to crowdsource their radio resources
for cooperatively adaptive bitrate video streaming. We propose a
multi-dimensional auction based incentive mechanism to promote
the user cooperation, supporting the asynchronous downloading
and the bitrate adapting of video users. In this mechanism, each
user initiates an auction whenever he is ready to download a new
data segment in an asynchronous fashion, and all nearby users
compete for the downloading opportunity by submitting a multi-
dimensional bid consisting of the intended segment bitrate and
the associated value. Design of such a multi-dimensional auction
is very challenging, as we need to guarantee the user’s truthful
reporting on the information on multiple dependent dimensions.
We first propose a truthful second-score (multi-dimensional)
auction framework, within which we further derive the efficient
mechanism that maximizes the social welfare (of each segment
downloading) and the sub-optimal mechanism that approximately
maximizes the auctioneer payoff. Experiment results show that
our proposed crowdsourced streaming can achieve 60% ∼ 76%
of the maximum social welfare even when 80 percentage of users
lose their direct network connections.

I. INTRODUCTION

A. Background

Mobile video traffic is growing at an unprecedented rate,
and is expected to increase 13-fold between 2014 and 2019,
accounting for 72% of global mobile data traffic by 2019 [1].
Adaptive bitrate (ABR) video streaming [2] is a widely-used
technology for video streaming over large distributed HTTP
networks such as Internet. With the ABR technique, a source
video is encoded at multiple bitrates (corresponding to differ-
ent video qualities such as resolutions), and each bitrate stream
is partitioned into a sequence of small multi-second parts,
called segments. Mobile video users can adapt their playing
bitrates to real-time network conditions, by choosing segments
with proper bitrates. Such a rate adaptation is particularly
important for mobile video streaming, due to limited network
resources and high variations of wireless networks.

While most of the existing literature on ABR focused on
the bitrate adaptation of a single user [3]–[6], we consider in
this work a more general multi-user cooperative video stream-
ing model. In the multi-user streaming model, the quality of
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Fig. 1. Crowdsourced Video Streaming Model.

experience (QoE) of each video user is affected not only by
his own network condition (such as wireless channel fading),
but also by the resource competition and interference of other
users [7]. Hence, traditional bitrate adaptation methods [3]–
[6] for single-user streaming model may fail to provide a
desirable QoE for multiple video users, due to the lack of
considerations of the potential network congestion and radio
interference among users. In this work, we will study the user
cooperation and the associated incentive mechanism for the
multi-user streaming on wireless networks.

B. Motivations

In particular, we propose a novel user cooperation frame-
work based on the crowdsourced user-provided networking
(UPN) technology for multi-user streaming, called crowd-
sourced (video) streaming. The key idea is to enable nearby
video users to form a cooperative group (via WiFi or Blue-
tooth) and crowdsource their radio connections and resources
for video streaming. Namely, in a cooperative group, each user
can download video data for others using his radio connection
as well as get video data from others’ radio connections.
Figure 1 illustrates such a crowdsourced network, where users
1 and 2 download three segments for user 3 who has no
available Internet connection, and user 1 further downloads
two segments for user 2 to enhance the QoE of user 2.

There are several advantages of applying such a crowd-
sourced UPN for multi-user video streaming. First, mobile
users are highly heterogeneous in terms of their Internet access
capabilities. Hence, crowdsourcing (aggregating) the through-
put of neighbouring users can effectively reduce the network
variation [8], [9]. Second, by exploiting the user diversity in
radio resource availabilities and service requirements, such a
crowdsourced UPN can reduce the negative externality (e.g.,
congestion and interference), while amplifying the positive
network effect (e.g., diversity gain) [10]–[12].1 Moreover,
such a crowdsourced streaming can be easily implemented

1As a result, crowdsourced UPN has already some successes in commercial
applications, such as FON [10] (a crowdsourced WiFi community network in
UK) and Karma [11] (a UPN-based mobile virtual network in USA).
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in practice by simply installing some customized apps (e.g.,
OpenGarden [13]) on smartphones.

Clearly, the success of such a crowdsourced streaming
requires a proper incentive mechanism that encourages video
users to crowdsource their radio resources and download data
cooperatively. Some recent literatures [14] have considered the
incentive issue in crowdsourced UPNs with elastic data appli-
cations. However, the incentive techniques in [14] cannot be
directly applied to the crowdsourced streaming model, mainly
because of the multi-bitrate requirement of video streaming
and asynchronous operation of video segment downloading.

C. Solution and Contributions

In this work, we focus on the incentive mechanism design
for multi-user crowdsourced video streaming. Namely, we aim
to design such a mechanism that offers enough compensation
for each video user to download data for others, considering
his own service request and his downloading cost. With the
ABR streaming, each video user downloads video segment
by segment, i.e., he starts to download a new segment (either
for himself or for another user) when completing a segment
downloading. Hence, the proposed mechanism needs to con-
sider the following problems for each user (downloader) when
he is ready to download a new segment:

• Receiver Selection: Whose segment will he download?

• Bitrate Adaption: What bitrate (quality) will the re-
ceiver choose for the segment to be downloaded?

• Cost Compensation: How much will he be compen-
sated for his downloading cost by the receiver?

Addressing these problems is challenging due to the informa-
tion asymmetry among users: each user has private informa-
tion such as the personal preference for video service, which
cannot be directly observed by others (see Section III-C).

To solve the above problems under information asymmetry,
we propose a multi-dimensional auction [15]–[17] based incen-
tive mechanism for multi-user crowdsourced video streaming.
Specifically, a multi-dimensional auction (or multi-attribute
auction) enables bidders to reveal more comprehensive in-
formation regarding the auctioned goods. Hence, the multi-
dimensional auction model generalizes the single-dimensional
model, and is applicable in a wider application scenario, e.g.,
financial markets, power procurement, and tourism industry
[24], [25]. In our model, the key elements and features of the
multi-dimensional auction are summarized below.

1) Auctioneer (Downloader): When a user is ready to
download a new segment, he acts as an auctioneer and initiates
a multi-dimensional auction to those nearby users who are
connected to him through Wi-Fi or Bluetooth. The multi-
dimensional auction consists of (i) a winner selection policy,
determining the receiver (winner) of the segment, and (ii) a
payment policy, determining the receiver’s payment.

2) Bidder (Potential Receiver): When a user observes an
auction initiated by a nearby downloader, he acts as a bidder
and submits a two-dimensional bid, which consists of (i) the
intended bitrate of the video segment to be downloaded, and
(ii) the value of the intended bitrate for him (or equivalently,
the price he is willing to pay for the bitrate).

There are several unique features and challenges for such
a multi-dimensional auction design. First, the bid is multi-
dimensional, that is, a bidder needs to decide not only the
price (value), but also the intended bitrate. Second, each user’s
value for a particular bitrate (quality) is related not only to
his private valuation information (i.e., his personal preference
for video service), but also to his state information (e.g., his
previously received bitrate and his current buffer level).2 It is
important to note that such an auction-based mechanism does
not require a real auction market. Instead, this mechanism can
be programmed in the devices and work automatically.

In this work, we study the multi-dimensional auction de-
sign systematically under both complete and incomplete state
information scenarios, depending on whether the auctioneer
can observe the state information of bidders. Specifically, in
each scenario, we first propose a truthful multi-dimensional
auction framework, under which each user will submit the
truthful bid (in the sense that the user’s reported value equals
his true value). Within this truthful framework, we then derive
the efficient auction that maximizes the social welfare, and
the sub-optimal auction that maximizes the auctioneer’s profit
approximately.

To our best, this is the first work that systematically
studies the incentive issue in a crowdsourced video streaming
framework for multi-user video streaming system. The key
contributions are summarized as follows.

• Auction-based Incentive Mechanism: We propose a
multi-dimensional auction based incentive mechanis-
m for crowdsourced video streaming, supporting the
asynchronous downloading and bitrate adapting of
video users. Design of a multi-dimensional auction is
challenging, as it needs to guarantee the user’s truthful
reporting of value and the proper choice of bitrate.

• Truthfulness and Efficiency: We propose a truthful
second-score (multi-dimensional) auction framework,
within which we further propose the efficient and sub-
optimal mechanisms that maximize the social welfare
and auctioneer profit (approximately), respectively.

• Experiments and Performances: We construct experi-
ments to illustrate the auction outcomes under differ-
ent practical scenarios, corresponding to different per-
centages of disconnected users and different percent-
ages of non-service users. Experiment results show
that the crowdsourced streaming achieve 60% ∼ 76%
of the maximum social welfare even when 80 percent-
age of users lose their direct network connections.

The rest of the paper is organized as follows. In Section III,
we present the system model. In Sections IV, we propose the
multi-dimensional auction. We present the simulation results
in Section V, and finally conclude in Section VI.

II. LITERATURE REVIEW

A. Adaptive Bitrate Streaming

Prior works on adaptive video streaming mainly focused on
the bitrate adaptation of a single user, and proposed different

2Please refer to Section III-C for more detailed discussions regarding the
private valuation information and the state information.
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adaptation methods (see [3] for a comprehensive discussion),
including the buffer based method [4], the channel prediction
based method [5], and the hybrid buffer and prediction based
method [6]. Some recent works extended the basic single-user
model to more advanced ones, such as multi-server model
[18] and P2P model [19]–[23], and studied the associated
incentive issues. In [18], Tian et al. considered the multi-server
model, where clients download video from multiple servers to
reduce the server load. In [19]–[23], researchers constructed
adaptive streaming models on P2P systems to reduce the server
load, and studied related incentive mechanisms for promoting
the user cooperation in the P2P streaming. Although the
P2P model considers the video sharing, the shared video is
restricted to the videos that have been already downloaded
by users. In the crowdsourced video streaming model, users
can watch different video streaming simultaneously through
cooperative downloading.

B. Multi-Dimensional Auction

Multi-dimensional auction (or multi-attribute auction) en-
ables bidders to reveal more comprehensive information re-
garding the auctioned goods. In [15] and [16], Che and Asker
et al. proposed the framework and general properties of multi-
dimensional auction, based on which David et al. further
analysed the auction properties under specific score functions
in [17]. The multi-dimensional auction model generalizes the
single-dimensional model, and is applicable in a wider applica-
tion scenario, e.g., financial markets, power procurement, and
tourism industry [24], [25].

To our best knowledge, this is the first work that adopts the
multi-dimensional auction in adaptive streaming, by allowing
bidders to report multiple necessary information such as bitrate
and price. Due to the unique features of adaptive streaming,
the multi-dimensional auction design in our model needs to
consider not only the private valuation information of bidders,
but also the state information of bidders. Such a consideration
makes our auction design quite different and more challenging
than the traditional multi-dimensional auction design.

III. SYSTEM MODEL

A. Adaptive Bitrate Streaming Model

We consider a set N � {1, 2, ..., N} of mobile video users,
each watching an adaptive bitrate (ABR) streaming video on
smartphone over 3G/4G cellular connections. Different users
may watch different videos from different video servers. We
consider a typical adaptive bitrate streaming model [2], where
a single source video file is partitioned into multiple segments
and delivered to a video user using HTTP. The key features
of our streaming model are summarized below.

1) Video Segmenting: To facilitate the video delivery over
the Internet, a source video file (e.g., a movie which is possibly
several hours in duration) is divided into a sequence of small
HTTP-based file segments, each corresponding to a short play-
back time (e.g., 2–10 seconds) of the source video. Moreover,
users download videos segment by segment.

2) Multi-Bitrate Encoding: Each segment is encoded at
multiple bitrates, corresponding different qualities (e.g., reso-
lutions). Users can select the most suitable one from the candi-
date bitrates for each segment, according to factors such as real
time network conditions and individual preferences.

3) Data Buffering: To smooth the playback, each down-
loaded segment is saved in a video buffer at the user’s device.
The video player fetches segments from the buffer sequentially
for playback. Due to the device memory’s limit, the maximum
buffer size is usually limited (e.g., corresponding to 20–40
seconds of playback time).

Notations: Key notations in this part are listed below.

• βn > 0: segment length (in seconds) of user n’s video;

• Rn � {R1
n, R

2
n, ..., R

Z
n } (with 0 < R1

n < R2
n < ... <

RZ
n ): the set of bitrates (Mbps) available for user n;

• Bn > 0: maximum buffer size (in seconds) of user n.

Without loss of generality, we assume a unit segment length
for all users’ videos, i.e., βn = 1 second, ∀n ∈ N .

B. Crowdsourced Network Model

Mobile users are highly heterogeneous in terms of their
video quality requirements and cellular link capacities. For
example, a user playing a high (or low) quality video may
happen to experience a low (high) cellular link capacity.
Hence, it is desirable to enable users to crowdsource their
cellular links for cooperative video downloading. We propose
a crowdsourced UPN based cooperation framework, called
crowdsourced streaming. In this framework, multiple users,
who may watch different videos, form a cooperative group and
download video segments for each other (as shown in figure
1). Namely, each user can download videos for the others as
well as obtain videos downloaded by others; within the group,
users forward the videos to the others directly via WiFi or
Bluetooth connections. In this model, we assume that the video
transmissions between the users are fast enough, so that we can
ignore the interference that caused by simultaneous WiFi or
Bluetooth transmissions.

Notations: We consider a continuous time model, and focus
on the user operations over a period of time T � [0, T ], where
t = 0 is the initial time and t = T is the ending time. The key
notations in this part are listed below.

• hn(t) > 0: cellular link capacity of user n at time t;

• en,m(t) ∈ {0, 1}: whether users n and m are encoun-
tered (i.e., in the same location with en,m(t) = 1)
at time t. Only encountered users can cooperate with
each other.

C. User Model

Now we define the cost of user when downloading video
data and the utility of user when receiving video data.

Without loss of generality, we consider the scenario where
user n (downloader) downloads a segment of bitrate r ∈ Rm

for user m (receiver) at time t0. The downloader n and receiver
m can be the same user. Let Tn(r, t0) denote the total time
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of user n for completing a segment downloading with size
r · βm = r (Mbits) starting at time t0, i.e.,∫ t0+Tn(r,t0)

t0

hn(t)dt = r.

1) Cost of Downloader (User n): The cost of downloader
mainly includes the energy cost (on both cellular link and local
WiFi link) and the potential cellular data payment.

Let ECELL
n (r) denote the energy cost on cellular link,

EWIFI
n (r) denote the energy cost on WiFi link (if n �= m), and

GCELL
n (r) denote the cellular data payment, for downloading a

segment of bitrate r for user m. Then, the total cost of user n
for downloading a segment of bitrate r for user m is:

Cn(r) � ECELL

n (r) + EWIFI

n (r) +GCELL

n (r). (1)

Note that ECELL
n (r), EWIFI

n (r), and GCELL
n (r) are all increasing

functions of r. More specifically, these functions also depend
on the starting time t0 and the receiver m. Here we omit t0
and m for notational clarity.

2) Utility of Receiver (User m): The utility of receiver cap-
tures the user’s QoE of the video streaming service. Users often
desire a higher video quality without frequent quality changes
and freezes during playback. Hence, the user’s QoE or utility
mainly depends on the following factors [3]–[6]: video quality,
quality fluctuation, and rebuffering.

(a) Video Quality: A higher video bitrate (quality) can bring
a higher value for users. Moreover, a user who is more desired
for service can achieve a larger value from the same bitrate. We
introduce a user-associated evaluation factor θm to capture the
user m’s desire for video. Then, the value that user m achieves
from a (one-second) segment of bitrate r can be defined as an
increasing function Vm(r, θm) of r and θm. In this work, we
adopt the following widely-used value function [7]:

Vm(r, θm) � log(1 + θm · r). (2)

(b) Quality Fluctuation: The change of bitrate (quality)
during playback decreases the user’s QoE, especially when
the quality is degraded. In this work, we assume that there is
a value loss that is proportional to the bitrate decrease, while
there is no value loss when the quality is upgraded [7]. Let
RPRE

m denote the bitrate of the previous received segment of
user m, and φQDEG

m denote the value loss of user m for one
unit (in Mbps) of bitrate decrease. Then, the value loss of user
m that induced by quality degradation is

LQDEG

m (r,RPRE

m ) � φQDEG

m · [RPRE

m − r]
+
, (3)

where [x]+ = max{0, x}.

(c) Rebuffering: If a video buffer is exhausted before
receiving a new segment, the video player has to freeze the
playback and rebuffer the video for a certain time. Such a
freezing during playback is called rebuffering. The rebuffering
(freezing) during playback greatly affects the user’s QoE. We
denote BCUR

m as the buffer level (in seconds) of user m at time
t0. Obviously, a rebuffering occurs if BCUR

m < Tn(r, t0), and
the rebuffering time is Tn(r, t0)−BCUR

m . Let φREBUF
m denote the

value loss of user m for one unit (in seconds) of rebuffering
time. Then, the value loss induced by rebuffering is

LREBUF

m (r,BCUR

m ) � φREBUF

m · [Tn(r, t0)−BCUR

m ]
+
. (4)

Based on the above, we can derive the utility of user m
for a new segment of bitrate r as:3

Um(r) � Vm(r, θm)−LQDEG

m (r,RPRE

m )−LREBUF

m (r,BCUR

m ). (5)

By (5), we can see that the utility of user m is related
not only to the user-associated evaluation factor θm, but also
to the user’s previous received bitrate RPRE

m and the current
buffer level BCUR

m . We refer to θm as the private valuation
information of user m, which can not be observed by other
users. Moreover, we refer to (RPRE

m , BCUR
m ) as the state infor-

mation of user m, which may or may not be observed by
other users in different state information scenarios.

3) Social Welfare: The welfare generated through a single
segment downloading (by downloader n for receiver m) is the
difference between receiver m’s utility and downloader n’s
cost, i.e.,

Wnm(r) = Um(r)− Cn(r). (6)

Obviously, the welfare for each segment depends on the down-
loader n’s link capacity hn(t) in time t ∈ [t0, t0 + Tn(r, t0)]
and the receiver m’s state information (RPRE

m , BCUR
m ) at time

t0. The total social welfare is the summation of the welfare
generated through the downloading of all segments.

D. Problem Formulation

We are interested in the following problems in a multi-user
crowdsourced video streaming model: at each decision epoch
of user n (i.e., at the time that a user completes a segment
downloading and is ready for the next segment downloading),
(i) for whom he is going to download the next segment, (ii)
what is the bitrate of the target segment, and (iii) what is the
payment from the segment receiver?

Solving these problems is challenging due to the private
valuation information of receivers (i.e., θm, m ∈ N ), which
calls for incentive compatible mechanisms (e.g., auctions).
In what follows, we will study the incentive mechanisms
under two different state information scenarios: complete and
incomplete state information, depending on whether the state
information of a user is observable to others.

IV. AUCTION-BASED INCENTIVE MECHANISM

In this section, we propose a multi-dimensional auction-
based incentive framework for our crowdsourced streaming
model. First, we will introduce the multi-dimensional auction
for our model. Then, we will study the efficient and sub-
optimal multi-dimensional auctions under both complete and
incomplete state information scenarios.

A. Multi-Dimensional Auction

To handle information asymmetry among users, we adopt
an auction-based incentive framework for the crowdsourced
streaming. The key idea is as follows. At each decision epoch
of a user (who acts as a downloader for downloading a new
segment), he initiates an auction (hence acts as an auction-
eer) for all nearby users to decide the next segment to be
downloaded. This framework operates in an asynchronous and

3Strictly, the utility of user m also depends on who is the downloader (i.e.,
n) and at what time the downloader starts to download (i.e., t0).
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decentralized manner, as different users download segments at
different times.

In a particular auction, the auctioneer needs to determine
not only the receiver and the payment (as in traditional
auctions), but also the bitrate of the receiver’s segment to be
downloaded. Moreover, the bitrate must be indicated by each
bidder, as each user’s individual preference for bitrate is his
private information. To this end, we adopt a multi-dimensional
auction [15]–[17], where each bidder submits both the price
and the intended segment bitrate.

1) Multi-Dimensional Auction Mechanism: Without loss of
generality, we consider an auction initiated by a downloader
n at time t0 for a set of encountered users:4

Nn � {m ∈ N | en,m(t) = 1, t ∈ [t0, t0 + ε]}.

Note that the downloader n is also in Nn as en,n(t) = 1.
Intuitively, the downloader has his own service requirement,
and will join the auction as a virtual bidder.5 Let θ (or θm)
denote the private valuation information of an arbitrary user (or
user m ∈ Nn). Let μ � (RPRE, BCUR) (or μm � (RPRE

m , BCUR
m ))

denote the state information of an arbitrary user (or user
m ∈ Nn). Let β � (r, p) (or βm � (rm, pm)) denote the
two-dimensional bid of an arbitrary user (or user m ∈ Nn).
Formally, the multi-dimensional auction operates as follows.

Mechanism 1 (Multi-Dimensional Auction Mechanism).

1) The auctioneer (downloader) n announces the win-
ning rule Γ(·) and the payment rule Π(·) of the
auction;

2) Each bidder m ∈ Nn submits a two-dimensional bid
βm, aiming at maximizing his expected payoff;

3) The auctioneer n determines the receiver m† and
payment p† according to the announced rules:

m† = Γ(βm, m ∈ Nn), p† = Π(βm, m ∈ Nn).

Accordingly, the bitrate of the (receiver’s) segment to
be downloaded is: r† = rm† .

Given an auction outcome (m†, p†, r†), the payoff of the
auctioneer n is

Pn(p
†, r†) = p† − Cn(r

†), (7)

and the payoff of the receiver (winner) m† is

Pm†(p†, r†) = Um†(r†)− p†, (8)

where Cn(r
†) is the downloader’s cost defined in (1), and

Um†(r†) is the receiver’s utility defined in (5).

2) Score Function: The winning rule Γ(·) and payment
rule Π(·) are two key elements in auction design. In a
single-dimensional auction, the auctioneer can determine the
winner by simply sorting all bidders’ prices and choosing the
bidder with the highest price. In a multi-dimensional auction,
however, the auctioneer cannot determine the winner by simply
choosing the bidder with the highest price. This is because the
bitrate of bidder will affect the auctioneer’s downloading cost,
and hence the auctioneer’s payoff.

4Here ε is a small positive value capturing the maximum possible down-
loading time of the downloader n for any encountered user’s segment.

5The downloader’s own bid can be viewed as a reserve bid, determining
the minimum bid with which he is willing to download for other users.

To this end, we introduce the score function in [16]
to determine the winner and payment. The key idea is to
transform a multi-dimensional bid β = (r, p) into a single
score S(r, p), so that the auctioneer can sort bidders with their
scores and determine the winner by choosing the highest score
bidder. In this work, we adopt the additive score function [17].

Definition 1 (Additive Score Function). A score function
S(r, p) is additively separable, if

S(r, p) = p− s(r), (9)

where s(r) is an increasing function of r, and satisfies that
Um(r)−s(r) has a unique interior maximum in r, ∀m ∈ Nn.6

Intuitively, such a score function increases with the bidder’s
price and decreases with the bidder’s bitrate, capturing the fact
that the auctioneer prefers a higher price and a lower bitrate.
Later we will show that by designing the score function or
the function s(·) properly, we can achieve desirable outcomes
such as efficient and sub-optimal ones.

B. Auction under Incomplete State Information

We first study the multi-dimensional auction design under
incomplete state information scenario, where the auctioneer
cannot observe the state information μm = (RPRE

m , BCUR
m ) of

bidders m ∈ Nn. Hence, the auctioneer will adopt the same
score function to all bidders m ∈ Nn:

S(r, p) = p− s(r). (10)

In what follows, we propose a truthful multi-dimensional
auction called second-score auction. Within this truthful
second-score auction framework, we further propose two d-
ifferent score functions: (i) an efficient score function that
maximizes the social welfare and (ii) an sub-optimal score
function that maximizes the auctioneer’s payoff approximately.

1) Second-Score (Multi-Dimensional) Auction: Inspired by
the second-price auction (single-dimensional), we propose a
second-score auction (multi-dimensional), where the winner
is the bidder with the highest score, and the winner’s payment
is the price that derives the second highest score under the
winner’s bitrate. Intuitively, the second-score auction can be
viewed as a multi-dimensional extension of the second-price
auction in the bidding structure.

Mechanism 2 (Second-Score Auction under Incomplete State
Informaiton). The second-score auction under incomplete state
information is defined by:

1) Winning Rule: The winner m† is the bidder with the
highest score, i.e.,

m† = arg max
m∈Nn

S(rm, pm);

2) Payment Rule: The winner’s payment p† is the price
that derives the second highest score under his bitrate
r† = rm† , i.e.,

p† = s(r†) + max
m∈Nn/m†

S(rm, pm).

6The requirement of “unique interior maximum” is used to ensure that each
bidder can derive a unique best bidding strategy (in Proposition 2).
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2) Truthfulness: Now we show that the proposed second-
score auction is truthful, in the sense that each bidder will
reveal the true valuation under any bitrate selection.

Proposition 1 (Truthfulness). Given any bitrate bidding strat-
egy rm, the optimal price bidding strategy pm of each bidder
m is his true utility under the selected bitrate rm, i.e.,

pm = Um(rm). (11)

Proposition 2 (Optimal Bitrate Selection). The optimal bitrate
bidding strategy rm of each bidder m is given by

rm = arg max
r∈Rm

Um(r)− s(r). (12)

Propositions 1 and 2 characterize the optimal bidding strat-
egy of each bidder m in the second-score auction. Intuitively,
each bidder will select the bitrate that maximizes the difference
between utility and increasing function s(r), and select the
price that equals the true utility under the selected bitrate.

By Proposition 2, we can further see that the bitrate
selection of each bidder depends on the auctioneer’s score
function. Hence, the auctioneer can carefully design the score
function (10) to achieve different desirable auction outcomes.

3) Efficient Score Function: A score function S(r, p) is
efficient if it maximizes the expected social welfare:

Eθ,μ

[
Um†(r†)− Cn(r

†)
]
.

Here, m† and r† are the auction outcome (i.e., winner and
bitrate) under a particular realization of θ and μ. Note that
the payment p† is cancelled out in the social welfare. The
expectation is taken over all possible realizations of all bidders’
private valuation information θ and state information μ.

Proposition 3 (Efficiency). The following score function

S(r, p) � p− Cn(r) (13)

implements the efficient mechanism (that maximizes the social
welfare), where Cn(r) is the downloading cost in (1).

4) Optimal Score Function: A score function S(r, p) is
optimal if it maximizes auctioneer’s expected payoff:

Eθ,μ

[
p† − Cn(r

†)
]
.

In general, however, it is challenging to solve the optimal score
function, due to the complicated relationship between payment
p† and information realization (θ,μ).

We first consider a special case, where all users have the
same state information: μm = μ, ∀n ∈ Nn. In this special
case, we can derive the optimal score function based on [15].
The optimal score function formulation is given as follows:

S(r, p) � p− Cn(r)−Δ(r,μ), (14)

where Δ(r,μ) is a function of r and μ. Through numerical
results, we find that Δ(r,μ) increases near linearly with r in
our model. This inspires us to propose a sub-optimal score
function in general case.

Proposition 4 (Sub-Optimality in General Case). With a
proper choice of k0, the following score function

S(r, p) � p− Cn(r)− k0 · r, (15)

implements a sub-optimal mechanism (that approximately
maximizes the auctioneer’s payoff).

Specifically, we use a linear function k0 · r to approximate
Δ(r,μ) in (14). Obviously, k0 = 0 corresponds to the efficient
score function in (13). Coefficient k0 is a design parameter.
In practice, an auctioneer can choose a proper k0 based on
empirical experiments.

C. Auction under Complete State Information

We now study the multi-dimensional auction design with
complete state information, where the auctioneer can observe
the state information μm = (RPRE

m , BCUR
m ) of each bidder m ∈

Nn. Note that θm is still the private information of bidder m
and cannot be observed by others. In this case, the auctioneer
can adopt a distinct score function to each bidder m:

Sm(r, p) = p− sm(r),

depending on the bidder’s state information (RPRE
m , BCUR

m ).
Hence, two bidders with the same bid may have different
scores, due to the different state information.

Similar as in the incomplete information scenario, we first
propose a truthful second-score multi-dimensional auction, and
then study the efficient and sub-optimal score functions.

Mechanism 3 (Second-Score Auction under Complete State
Informaiton). The second-score auction under complete state
information is defined by:

• Winning Rule:
m† = arg max

m∈Nn

Sm(rm, pm);

• Payment:
p† = sm†(r†) + max

m∈Nn/m†
Sm(rm, pm).

The key difference between Mechanisms 2 and 3 is that in
the former case, all bidders’ bids are evaluated by the same
score function S(r, p), while in the latter case, each bidder m’s
bid is evaluated by a distinct score function Sm(r, p).

Proposition 5 (Truthfulness). Given any bitrate bidding strat-
egy rm, the optimal price bidding strategy pm of each bidder
m is his true utility under the selected bitrate rm, i.e.,

pm = Um(rm). (16)

Proposition 6 (Optimal Bitrate Selection). The optimal bitrate
bidding strategy rm of each bidder m is given by

rm = arg max
r∈Rm

Um(r)− sm(r). (17)

Proposition 7 (Efficiency). The following score function set

Sm(r, p) � p− Cn(r), ∀m ∈ Nn (18)

implements the efficient mechanism (that maximizes the social
welfare), where Cn(r) is the downloading cost in (1).

Proposition 8 (Sub-Optimality). With proper choices of
{km, m ∈ Nn}, the following score function set

Sm(r, p) � p− Cn(r)− km · r, ∀m ∈ Nn, (19)

implements a sub-optimal mechanism (that approximately
maximizes the auctioneer’s payoff).

It is easy to see that the efficient score functions in
Proposition 7 are identical for all users, and equivalent to the
efficient score function (13) in Proposition 3 for the incomplete
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Fig. 2. Social Welfare under Scenario A and Scenario B.

state information scenario. Similarly, {km, m ∈ Nn} in
Proposition 8 are design parameters and can be chosen via
empirical experiments in practice, as k0 in Proposition 4.

V. EXPERIMENTS AND PERFORMANCE

A. Experiment Setting

1) Real-World Datasets: We apply real data traces in ex-
periments to simulate cellular link capacities. The link capacity
trace is obtained from bestTV,7 one of the largest over-the-top
video service providers in China. In this dataset, around 28%
users experience a throughput lower than 1Mbps; around 50%
users experience a throughput lower than 2.5Mbps; and around
85% users experience a throughput lower than 5.0Mbps.

2) Experiment Setting: The experiments are constructed in
a simulative online video streaming system with 50 users and
5 locations, in a period of 50 seconds (within which each user
attempts to watch a 50-second video). Each user randomly
selects a location at the beginning of each experiment, hence
each location has 10 users on average. According to the
data from bestTV, video streaming is encoded with bitrate
{0.2, 0.4, 0.7, 1.3, 2.3}Mbps. The segment length is 1 second
for all videos, and the buffer length is 20 seconds for all users.
In each experiment, we randomly generate 100 systems (in
terms of link capacities and user locations), and compute the
average outcome as the experiment result.

3) Performance Metrics: We will study two performance
metrics: social welfare and downloader payoff, under different
cooperative schemes: (i) non-cooperative (Non) benchmark,
where users do not cooperate, and download their own seg-
ments independently; (ii) partially cooperative (Partial) bench-
mark, where users form fixed cooperative groups (5 users per
group), and download video for his own or his partners within
the group (when encountered); (iii) fully cooperative (Full)
with efficient mechanism (Full-E) and sub-optimal mechanism
(Full-S), where users fully and dynamically cooperate with
each other, and help all encountered users based on the
efficient mechanism and sub-optimal mechanism, respectively.

We construct experiments to simulate two practical scenar-
ios: Scenario A, where some users are disconnected, hence can
only get data from others; Scenario B, where some users are
not playing video, hence have more resources to help others.
In Scenario A, we fix the total number of users, and gradually
increase the ratio of disconnected users. In Scenario B, we fix
the number of users with video services, and gradually add
additional users without video services.

7Detailed data can be found at http://www.bestv.com.cn/
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Fig. 3. Downloader’s Payoff under Scenario A and Scenario B.

B. Social Welfare

Figure 2 (a) shows the social welfare vs. the disconnected
user percentage (Scenario A). In this figure, the social welfare
decreases with the disconnected user percentage under all four
schemes, while the decrease is less dramatic under Full-E and
Full-S than other two benchmark schemes. Specifically, under
non-cooperative benchmark, social welfare reduces approxi-
mately 88.8% as the disconnected user percentage increases
from 0% to 80%, while the reduction is about 40.2% under
Full-E, and 24.4% under Full-S. Moreover, Full-S is even
better than Full-E when the disconnected user percentage is
large. The reason is that the sub-optimal mechanism that used
in Full-S trends to reduce the bitrate, hence benefits more
disconnected users, leading to a larger social welfare8. In
summary, cooperation benefits the social welfare when some
users are disconnected, and the benefit increases with the
percentage of disconnected users.

Figure 2 (b) shows the social welfare vs. the no video
service user percentage (Scenario B). It shows that the social
welfare slightly increases with the no service user percentage
under three cooperative schemes (Partial, Full-E, and Full-
S), but does not change under non-cooperative benchmark,
because the users without video services can help others in the
three cooperative schemes with the higher effort. Moreover,
Full-E and Full-S are better than Partial, while the perfor-
mance gain decreases with the no service user percentage.

C. Downloader’s Payoff

Downloader’s payoff is the user’s payoff from downloading
for the others. Figure 3 (a) shows the downloader’s payof-
f vs. the disconnected user percentage (Scenario A) under
partially and fully cooperative schemes.9 We can see that
the downloader’s payoff increases with the disconnected user
percentage, due to the increased demand (from disconnected
users) and decreased competition. Moreover, the increase is
much larger under Full-E and Full-S than under Partial; in
other words, only full cooperative schemes can fully benefit
the connected users who can serve as downloaders.

Figure 3 (b) shows the downloader payoff vs. the no-
service user percentage (Scenario B) under partially and fully
cooperative schemes. In this figure, the downloader’s payoff
decreases with the no service user percentage under Full-E and

8Note that we have proved the Full-E maximizes the social welfare in a
single segment downloading. However, in Figure 2 we are showing the social
welfare for the entire time period (50 seconds).

9We ignore the non-cooperative scheme, because there is no user helping
others, hence no downloader payoff.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:54 UTC from IEEE Xplore.  Restrictions apply. 



Full-S, due to the decreased demand and increased competition
(from no service users).

VI. CONCLUSION

In this work, we studied a crowdsourced video streaming
framework, which enables nearby mobile users to crowdsource
their radio resources and cooperate with each other for joint
video streaming. We proposed a multi-dimensional auction
based incentive mechanism, and analyzed the truthfulness,
efficiency, and optimality of the proposed auction mechanism-
s systematically under different state information scenarios.
There are several interesting directions for extending this
work. First, it is meaningful to study the optimal multi-
dimensional auction analytically in the general case. Second, it
is interesting to study a more general scenario, where bidders
make decisions based on not only the current state information,
but also the prediction of future states. Our study in this work
provides an important first step towards these extensions.
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APPENDIX

A. Proof for Proposition 1

Given any bitrate rm, the score that the bidder obtains only
depends on the price that the bidder submits, i.e., S(rm, p) =
p − s(rm), and s(rm) becomes a constant. Hence, the price
truthfulness is equivalent to the score truthfulness under the
given bitrate. The second-score auction is a VCG mechanism
in terms of the score, so we have the score truthfulness
(resulting in the price truthfulness).

B. Proof for Proposition 2

We aim to show that for any bid (r′m, p′), there always
exists a bid (rm, p∗) such that it has larger expected pay-
off than (r′m, p′) does, where rm is given in Proposition 2
and S(r′m, p′) = S(rm, p∗). Specifically, bids (rm, p∗) and
(r′m, p′) have the same winning probability, because they share
the same score. When lose, both of them get zero payoff; when
win, (rm, p∗) has a larger payoff, i.e.,

Um(rm)− (Ŝ + s(rm))︸ ︷︷ ︸
payment

≥ U(r′m)− (Ŝ + s(r′m))︸ ︷︷ ︸
payment

,

where Ŝ denotes the second highest score, because rm =
argmaxr Um(r)− s(r) under the constraints.

C. Proof for Proposition 3

According to Proposition 1 and Proposition 2, bidder m
submits bid (rm, pm), where rm = argmaxr∈Rm Um(r) −
Cn(r) and pm = Um(rm). Then the score for bidder m is:

S(rm, pm) = max
r∈Rm

Um(r)− Cn(r). (20)

In second-score auction, bidder with the highest score wins.
The winner and the bitrate result are as follows:

{r†,m†} = arg max
r∈Rm,m∈Nn

Um(r)− Cn(r). (21)

This implies that the auction result {r†,m†} maximizes the
social welfare.

D. Proof for Proposition 5 to 7

In complete state information, the bidders still aim to
maximize their expected payoff based on the given distinct
score function. Hence, the proof for Proposition 5 (truthful)
and Proposition 6 (optimal bitrate selection) are the same as
the proof for Proposition 1 and Proposition 2 respectively.

Furthermore, the efficient score functions are the same
for all the bidders, i.e., Sm(r, p) = p − Cn(r). Under the
same score function, this problem degrades to incomplete state
information case. Similarly, the score that bidder m submits
is given by:

Sm(rm, pm) = max
r∈Rm

Um(r)− Cn(r). (22)

In second-score auction, bidder with the highest score wins.
The winner and the bitrate result are as follows:

{r†,m†} = arg max
r∈Rm,m∈Nn

Um(r)− Cn(r). (23)

This implies that the auction result {r†,m†} maximizes the
social welfare. Proposition 7 proved.
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