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Abstract—Donation-based markets have been implemented by
many online platforms, such as live streaming platforms. In these
markets, producers provide services without mandatory charges,
and customers enjoy the services and voluntarily donate money
to the producers. The donation is split between the producers
and platform with a pre-agreed fraction. To gain insights into
the market operation, we use a two-stage game to capture the
sequential decision process between the platform and producers.
In Stage I, the platform decides a donation-split-fraction (DSF),
i.e., the fraction of donation kept by the producers. In Stage
II, producers decide whether to participate in the platform and
(if yes) how to choose their service attributes considering the
DSF as well as the producers’ and customers’ preferences. We
prove that the Stage II game is a potential game with a counter-
intuitive equilibrium result: although a larger DSF leads to
more producer participation and a better match between the
producers’ choices and the customers’ preferences, it does not
necessarily lead to more total donation. The Stage I problem,
nevertheless, is challenging to solve analytically due to its non-
convexity. To gain insights regarding the optimal DSF that
maximizes the platform’s payoff, we characterize both its upper-
bound and lower-bound. We show numerically that the platform’s
optimal payoff always decreases with the mismatch between the
producers’ and customers’ preferences. Finally, we conduct a
case study with the dataset from Twitch and demonstrate the
approach of computing the platform’s optimal DSF without the
producers’ inherent preferences.

Index Terms—Live streaming platform, donation-based mar-
ket, potential game, non-atomic game.

I. INTRODUCTION

A. Background and Motivation

Recently, many online platforms have chosen to implement
a donation-based two-sided market between two groups of
users: producers who provide services without mandatory
charges, and customers who enjoy the services and voluntarily
donate to the producers. The customers donate mainly due to
their desires of being acknowledged on the platforms (e.g., to
gain community presence) and supporting the producers for
future high-quality service provisions [2]. The donation is split
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between the producers and the platform with a fixed donation-
split-fraction (DSF), which corresponds to the fraction of
donation kept by the producers.

Many live streaming platforms are good examples of the
donation-based markets. One of them is Twitch, which is the
largest live streaming platform in the US [3]. It has 1.44
million concurrent viewers and 56,000 concurrent streamers
on average, as of March 2020 [4]. On live streaming plat-
forms, individuals can become streamers to live stream their
videos of game play for viewers.1 The viewers watch live
streaming videos for free. These viewers can donate to the
streamers in order to receive personal recognition and obtain
the permission of doing extra actions (e.g., using diverse chat
icons in the stream chat window) [2].2 A fixed fraction of the
donation will be kept by the streamers (e.g., at this moment,
1/1.4 ≈ 0.71 on Twitch), while the rest will be kept by the
platform. The implementation of the donation-based markets
helps the platforms gamify the interaction between streamers
and viewers [2] and hence attract more streamers and viewers
to participate in the platforms. Meanwhile, the direct monetary
transfer from viewers to streamers motivates the streamers
(who may not be professional video producers) to provide
high quality live streaming services. The total donation volume
on live streaming platforms is huge. In 2018, a total of
$141 million dollars of donation were received by top live
streaming platforms including Twitch, YouTube Live, Mixer,
and Facebook Live [3]. Other donation-based market examples
are blogging platforms (e.g., WeChat Subscription) and online
music platforms (e.g., Songtradr).3

The donation-based markets lead to distinctive monetary
ecosystems for online platforms. For example, for traditional
video streaming services (e.g., video on demand services on
YouTube), the majority income of a streamer comes from
advertisement or sponsorship [5]. In comparison, on live
streaming platforms (e.g., Twitch), the majority income of
a streamer comes from viewers directly [5]. Hence, on live
streaming platforms, streamers have more incentive to provide
services that match the viewers’ preferences. On the other
hand, as the platform keeps part of the donation from viewers

1Since streamers and viewers are the ones who provide and enjoy services
on live streaming platforms, respectively, they correspond to the producers
and customers in donation-based markets, respectively.

2There are other types of monetization methods on live streaming platforms.
For example, on Twitch, streamers can earn money through not only donation
but also viewers’ subscription, advertisement, and sponsorship [5]. We will
not discuss those monetization methods other than donation in this paper.

3WeChat Subscription (https://mp.weixin.qq.com/?lang=en_US) is a blog-
ging platform for individual article publishing. Songtradr (https://www.
songtradr.com/) is a music platform for independent musicians.
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to streamers, it has the incentive to optimize the DSF in order
to motivate streamers to provide the services matching the
viewers’ preferences and to optimize its payoff.

The donation-based feature of these markets brings two
unique questions as follows:

First, from the producers’ point of view, how should they de-
cide their service attributes (e.g., on a live streaming platform,
what game to stream at what time of day) given a fixed DSF?
The producers and customers may have different preferences
over the service attributes. The producers’ choices (which can
be different from their preferences) will affect the competition
among producers and the satisfaction of the customers.

As an example, Figure 1 illustrates the mismatch of the
number of concurrent streamers and viewers on Twitch.4

Figure 1 (a) shows the average number of concurrent streamers
and viewers (over a period of two weeks) of different games.
Some games with a large number of streamers have a small
number of viewers (e.g., {3} Fortnite). This implies that those
streamers may improve their payoffs by switching to stream
the other games with less competitors. Figure 1 (b) shows the
average number of concurrent streamers and viewers of game
League of Legends at different time of day. Some streamers
may increase their payoffs by changing the time of day of
their stream (e.g., from 3am to 11am) to gain more attention
and potentially more donation from viewers.

Second, from the platform’s point of view, how should it set
the DSF to maximize its payoff? A higher DSF reduces per-
donation revenue to the platform. On the other hand, it can
increase the incentive for the producers to participate in the
platform and better match the customers’ preferences, which
may induce more donation.

Despite the fact that donation-based markets have been
embraced by top online platforms (e.g., Twitch, YouTube Live,
and Facebook Live) and attract millions of producers and
customers, there does not exist a good understanding regarding
the above two key questions theoretically. In this work, we
aim to understand the two key questions and to investigate the
interaction between the platform and producers.5

B. Solution Approach and Contribution

For the sake of concreteness, we focus on the live streaming
example in this paper. The modeling approach and analysis
techniques are applicable to other donation-based markets as
well. We will use “streamer" and “producer" interchangeably
and use “viewer" and “customer" interchangeably.

We use a two-stage game to capture the interaction between
the platform and producers. In Stage I, the platform announces
the DSF. In Stage II, each producer decides whether to
participate and what service attribute to choose (for example,
at what time of day to stream). This two-stage game captures

4Figure 1 is based on the stream data that we collected from Twitch. The
data is collected every 15 minutes from Nov. 05 to Nov. 20, 2017.

5Note that although our analytical results are able to provide practical
insights, there is still some significant work needed to help online platforms to
make strategic marketing decisions. Many other factors need to be considered
to reach a comprehensive marketing decision, including brand reputation,
entire monetization ecosystem (e.g., advertisement, sponsorship), as well as
user culture and psychology (e.g., sense of fairness).
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Fig. 1. Mismatch of the number of concurrent streamers and viewers in
Twitch: (a) game attribute; (b) time of day attribute.

the major feature of the donation-based markets and the main
interactions between the platform and producers. In practical
systems, there may also exist other behaviors of the platform
and producers. For example, on a live streaming platform,
there may exist social interactions between streamers (e.g.,
community formation) and other donation methods (e.g., dona-
tion through a third party transaction without the involvement
of the platform). Detailed studies of those behaviors will be
part of our future work. Moreover, we assume that both the
platform and producers are rational, i.e., they aim at optimizing
their payoffs. It will be an interesting future direction to further
consider bounded rational decision makers, considering the
impact of emotional and psychological factors.

First, regarding the Stage II problem where producers make
their participation and service attribute selection decisions,
this problem is an extended version of the Hotelling model
[6] with a large (finite) number of producers. This is still
an open problem [7]. To resolve this issue, we consider a
large population approximation where each producer is non-
atomic, i.e., a single producer’s strategy choice does not
affect the entire market. This approximation is reasonable
given the large number of producers (and customers) on those
platforms in practice. The remaining difficulty is to compute
the asymmetric equilibrium, where producers of the same
preference may choose different strategies at the equilibrium.
This is significant more difficult than focusing on only the
symmetric equilibrium as in many previous work discussed in
the survey paper [8]. Despite these difficulties, we are able to
prove that the Stage II game is a potential game [9], [10], based
on which we derive the game equilibrium and corresponding
equilibrium features.

Next, regarding the Stage I problem where the platform
optimizes the value of DSF, this problem is non-convex and
hence is challenging to solve. By exploiting the structure of
the problem, we derive both the upper-bound and lower-bound
of the optimal DSF. We also construct empirical examples to
show how the optimal DSF and the optimal platform’s payoff
change with system parameters.

Our key contributions are listed as follows:
• Donation-Based Market Formulation: To the best of our

knowledge, this is the first paper that presents a two-
stage model of a donation-based market. We characterize
how the platform optimizes DSF, and how the producers
decide their participation and service attributes.
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• Stage II Equilibrium: Under the non-atomic producer
approximation, we prove that the Stage II problem is a
potential game and derive the asymmetric equilibrium.
At the equilibrium, a larger DSF induces more producer
participation and a better match to the customers’ prefer-
ences. However, a larger DSF may not necessarily induce
a larger total customers’ donation.

• Stage I Equilibrium: Under the non-convex Stage I prob-
lem, we derive the upper-bound and lower-bound of the
optimal DSF. We show that if it is harder to motivate
producer participation, the lower-bound is larger. That is,
the platform sets a higher DSF to motivate producers’
participation. If the customer donation is more sensitive
to the number of producers, the upper-bound is larger.
That is, the platform sets a higher DSF to motivate the
producers to fulfill the customers’ preferences.

• Numerical Results: We further construct numerical ex-
amples, and show that as the mismatch between the
producers’ and customers’ preferences increases, the op-
timal DSF either monotonically increases or decreases,
while the platform’s optimal payoff always decreases due
to its increasing efforts on balancing the mismatch. As
the producers’ opportunity and deviation costs increase,
the optimal DSF changes non-monotonically, while the
platform’s optimal payoff always decreases due to its
increasing compensation on the costs.

• A Case Study based on Empirical Twitch Data: We collect
two weeks’ data about the streamer and viewer behaviors
from Twitch. Based on the data, we demonstrate how to
compute the platform’s optimal DSF without knowing the
producers’ inherent preferences.

The rest of this paper is organized as follows. We review the
existing works in Section II. We propose the system model in
Section III. In Sections IV and V, we analyze the equilibrium
of Stages II and I, respectively. We construct the numerical
examples in Section VI, perform the case study with Twitch
data in Section VII, and conclude in Section VIII.

II. LITERATURE REVIEW

A. Donation-Based Market

Most of the prior works on donation-based markets studied
the customers’ donation behaviors in these markets. Hu et
al. [11] conducted an online survey to study why customers
visit live streaming platforms. Hilvert-Bruce et al. [12] studied
why customers donate. Zhu et al. [13] analyzed the data from
Douyu (a live streaming platform in China) to investigate
the customers’ donation behaviors. Liu [14] investigated the
monthly donation earned by streamers on live streaming
platforms. Tang et al. [15] used an all-paid auction framework
to understand the customers’ donation behaviors.

Through data analysis, Jia et al. [16] discussed the produc-
ers’ and customers’ different preferences on live streaming
platforms. The authors mentioned that the platform has to
motivate producers to match the customers’ preferences to
increase the platform’s revenue. However, as far as we know,
there is no existing study analytically characterizing how
the platform should motivate the producers’ service attribute

selection. As a first step, this work studies the platform’s
optimal DSF decision and analyzes the producers’ service
attribute selection in donation-based markets.

B. Hotelling Model

The Stage II of the two-stage game can be regarded as
an extended version of the Hotelling model [6], [17] with a
large finite number of producers. This still remains as an open
problem in the literature when the number of producers is
arbitrary [7]. Economides [18] studied a multi-producer model
without discussing the producer equilibrium. Brenner [19]
theoretically studied a three-producer case, and empirically
studied four- to nine-producer cases. Behringer et al. [20]
theoretically analyzed a four-producer case. However, the
analyses in [19] and [20] cannot be easily generalized to the
case of an arbitrary number of producers.

We overcome the difficulty by approximating the problem
with non-atomic producers, where a single producer’s strategy
choice does not affect the market. We believe that such an
approximation is reasonable given the very large number of
streamers on practical live streaming platforms. Schmeidler
[21] first analyzed a game with non-atomic players, and
proved the existence of Nash equilibrium (without deriving
the equilibrium). However, we are not aware of papers that
explicitly characterizing the equilibrium of a general Hotelling
model with non-atomic producers. Based on the reformulated
model, we derive the asymmetric equilibrium with non-atomic
players, which is a challenging problem according to [8].

III. SYSTEM MODEL

We first introduce the system setting. Then, we define the
two-stage game and the platform’s and producers’ payoffs.

A. System Setting

We first introduce the platform model and the service at-
tribute. Then, we introduce the producer and customer models.

1) Platform: We consider a platform with a set of non-
atomic producers and a set of non-atomic customers. Such
a mass (non-atomic) setting corresponds to the case where
the entire producer or customer population is large, under
which a producer’s or a customer’s behavior does not affect
the aggregated feature of the entire population. In practical
systems, for example, Twitch often has thousands of streamers
and millions of viewers on average (see Figure 1).

The producers provide services without mandatory charge.
The customers enjoy the services and voluntarily donate to the
producers. The donation will be shared between the producers
and the platform with a fixed fraction.

2) Service Attribute: For simplicity, we consider one ser-
vice attribute in this paper.6 For example, on a live streaming
platform, the service attribute can be the time of day of a
stream or the type of the game to be streamed.

6Our model can be extended to the case of multi-attribute, under which the
potential game in Section IV is still applicable. The extension can be done
by extending the one-dimensional location set (to be discussed in the next
paragraph) to a multi-dimensional one.
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Fig. 2. An example of a circular service attribute model with time of day as
the service attribute.

Similar as in Salop’s circle Model (a circular extension of
the Hotelling model) [22], we represent the service attribute
using a unit length circle. Such a circular model has no
extreme points (as in an interval model). Thus, it can better
characterize realistic attributes, such as time of day and game
type. We label the possible values of the service attribute by
a set L = {0, 1, 2, ..., ! − 1}, where we refer to each of the
values as a location.7 For the rest of this paper, we will use
“location" and “value of the service attribute" interchangeably.
Let A; ∈ [0, 1) denote the position along the circle that location
; is located at. An example is shown in Figure 2. It shows
a location set L = {0, 1, ..., 23}, each representing an hour
of the day, and location ; is located at A; = ;/24 along the
circle. Producers and customers are distributed along the circle
based on their preferences over the service attribute, where the
preferences are inherent and given. The heights of the bars
and arrows denote the number of producers and customers
preferring the corresponding locations, respectively.

3) Non-Atomic Producers: There are a total of # produc-
ers, where these # producers are regarded as a mass compris-
ing non-atomic producers. Each producer has a preferred value
of the service attribute. Let =; ∈ [0, 1] denote the fraction of
the producers preferring location ; ∈ L, and

∑
;∈L =

; = 1.
Hence, the number of producers preferring location ; is
# ; = =; × # . For the rest of this paper, we will use either
the fraction =; or the number # ; depending on presentation
simplicity. A producer can choose a location that is different
from its preference, so as to avoid intense competition with
other producers or to encounter more customers. For example,
in Figure 2, a producer at hour 3 may want to deviate to hour
6 to encounter less producers and more customers.

4) Non-Atomic Customers: There are a total of " cus-
tomers, where these " customers are regarded as a mass
comprising non-atomic customers. Each customer has a pre-
ferred value of the service attribute. Let <; ∈ [0, 1] denote
the fraction of customers preferring location ; ∈ L, and∑
;∈L <

; = 1. Hence, the number of customers preferring
location ; is " ; = <; × " . For simplification, we assume
that these customers will stick to their preferences over the
service attribute.

A customer will donate to the producers who provide
services at the customer’s preferred location. Instead of char-
acterizing the donation behavior of each customer, we consider

7The discrete locations characterize discrete attributes, such as game types.
As the number of locations increases, the discrete set of locations can
approximate a continuous set of locations.

an aggregate donation function at each particular location.
Let �; ("†, #†) denote the donation function at location
; ∈ L, given the number of producers #† (according to
the producers’ choices) and the number of customers "†

(according to the customers’ preferences) at that location. Note
that the donation function �; ("†, #†) at different locations
; ∈ L can be different. For example, considering the game
attribute on live streaming platforms, viewers may be willing
to donate more when they are watching a live streaming
video on a more difficult game. In practice, this function
can be obtained through data analysis [13]. We assume that
�; ("†, #†) satisfies the following assumption.

Assumption 1 (Donation Function). For any location ; ∈ L,
customer donation function �; ("†, #†) (i) is strictly increas-
ing in "†, (ii) is strictly increasing and concave in #†, and
(iii) has an elasticity that is smaller than one, i.e.,

[;," † (#†) =
[�; ("†, #†)]# †#†

�; ("†, #†)
≤ 1, ∀"†, #† ∈ R+, (1)

where [�; ("†, #†)]# † denotes the partial derivative of
�; ("†, #†) with respect to #†.

Assumption 1 is general and reasonable in practice. Specif-
ically, Point (i) implies that as the number of customers in-
creases, the total donation strictly increases. Point (ii) implies
that as the number of producers increases, the total donation
strictly increases but the marginal change decreases. On live
streaming platforms, for example, more streamers imply a
higher probability that a viewer can find his satisfactory
streams so that he will donate more, while the probability
of finding a satisfactory stream is concave in the number of
streamers. Point (iii) on elasticity can be written as follows:

1 ≥ [�; ("
†, #†)]# † · #†

�; ("†, #†)
≈ %Δ�; ("†, #†)

%Δ#†
. (2)

This implies that a unit percentage increase in the number
of producers leads to a percentage donation increase that is
less than one. Because of this, the producers tend to avoid
competition (e.g., a streamer would prefer to stream at a time
when there are more viewers and less streamers). If Point (iii)
is not satisfied, then all producers would prefer to stream at a
few common time, which is trivial to analyze and does not fit
into the practical data that we collect.

We now present an example of the donation function based
on [13]. Paper [13] showed that the donation to a streamer
increases with the number of viewers in the following manner:

[received donation per streamer]

= 410 ([viewers per streamer])11 , (3)

where 10 = −1.17 and 11 = 0.6 based on empirical data. This
leads to the following donation function:

�; ("†, #†) = 410
(
"†/#†

)11
#†, ; ∈ L, (4)

which is the per-producer donation 410 ("†/#†)11 multiplied
by the number of producers. We can show that this donation
function �; ("†, #†) satisfies Assumption 1.
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TABLE I
KEY NOTATION.

Notation Description
# , " Total number of producers/customers
=; , <; The fraction of producers/customers preferring location ; ∈ L
# ; , " ; The number of producers/customers preferring location ; ∈ L
+ A producer’s opportunity cost for participation
, A producer’s deviation cost per unit quadratic distance
LB The set of locations served by the producers choosing location

B ∈ L
S; S; , {B ∈ L : ; ∈ LB }, the set of producers’ location

choices that can serve location ; ∈ L
U Platform’s DSF decision
G
?
B The fraction of the producers (over the entire producer mass)

preferring location ? ∈ L and choosing location B ∈ L
x? x? = (G?B , ∀B ∈ L) , the strategies of the producers

preferring ? ∈ L
x x = (G?B , ∀?, B ∈ L) , the strategies of all producers

#̂; (x) #̂; (x) ,
∑

?∈L
∑

B∈S; G
?
B × # , the cumulative number of

producers serving location ; ∈ L under strategy x

B. Two-Stage Game

We use a two-stage game to capture the sequential decision
process among the platform and the producers. Note that this
two-stage game is of complete information, i.e., the platform
and producers are aware of the preference distributions of the
customers and producers over the service attribute.8 The two-
stage game is follows.
• Stage I: The platform decides the DSF U ∈ [0, 1]. This

is the fraction of donation kept by producers.
• Stage II: Based on the announced DSF U, each producer

decides whether to participate and what location to choose
(if participating) concerning the service attribute.

Next, we elaborate on the producers’ decisions in Stage II.
Note that when a producer decides its service attribute, it needs
to take into account the preferences of not only the customers
but also other producers. We consider the aggregated decisions
of the producers. Let G?B denote the fraction of producers
preferring location ? ∈ L and choosing location B ∈ L.9 Note
that this fraction G

?
B ∈ [0, 1] is the fraction over the entire

producer mass. The strategies of the producers preferring
location ? ∈ L is characterized by x? = (G?B ,∀B ∈ L). Let
x = (G?B ,∀?, B ∈ L) denote the strategies of all the producers.
In addition, any feasible strategy x should satisfy producer
population constraint:∑

B∈L
G
?
B ≤ =? ,∀? ∈ L. (5)

Specifically, for producers preferring any location ? ∈ L, the
sum of the producers choosing all locations should be no larger
than the total number of producers of this type.

For a producer selecting a location B, we assume that it can
serve the customers preferring the following  ≤ ! locations
(including location B). The corresponding set of locations is

8In practice, the preference distributions of the customers and producers can
be estimated through real-world survey and historical data analysis. To address
the potential incomplete information scenario, in the case study in Section VII,
we demonstrate the approach of computing the platform’s optimal DSF with
only the producers’ actual behaviors (instead of their inherent preferences).

9In this paper, we use superscripts to denote preferences and subscripts to
denote decisions.

denoted by LB , (mod(B + : − 1, !), : = 1, ...,  ), where
mod(G, H) is remainder of the division of G by H. For example,
if the producers stream for two hours ( = 2), choosing hour
3 (in Figure 2) means that the producers can serve customers
preferring hours 3 and 4, i.e., L3 = {3, 4}.

For presentation convenience, let S; , {B ∈ L : ; ∈ LB}
denote the set of producers’ location choices that can serve
location ; ∈ L; hence, S; = (mod(; + 1 − :, !), : = 1, ...,  ).
For example, in Figure 2, if the producers stream for two
hours ( = 2), customers in location 3 can be served by
the producers choosing any location in set (3 = {2, 3}. Let
#̂; (x) ,

∑
?∈L

∑
B∈S; G

?
B × # denote the cumulative number

of producers serving location ; under strategy x.

C. Payoff Functions

Given the platform strategy U and the producer strategy x,
we define their payoffs as follows.

1) Platform’s Payoff: The platform’s payoff is equal to 1−U
fraction of the total donation from all customers:

� (U, x) = (1 − U)
∑
;∈L

�; (" ; , #̂; (x)). (6)

2) A Producer’s Payoff: If a producer does not participate
in the platform, it gains a zero payoff.10

If a producer preferring location ? ∈ L participates and
chooses a location B ∈ L, its payoff is equal to the difference
between the donation gain and its cost, i.e.,

�
?
B (U, x) = U ×

∑
;∈LB

*; (" ; , #̂; (x))

− � ?B (+,,), ∀?, B ∈ L. (7)

Specifically, the donation gain is the DSF U multiplied by the
average donation11 that a producer can gain at the locations
in set LB . The average donation at a location ; ∈ LB is

*; (" ; , #̂; (x)) =
�; (" ; , #̂; (x))

#̂; (x)
. (8)

The cost contains a fixed opportunity cost + and a distance-
associated deviation cost with a coefficient , . Formally,

�
?
B (+,,) = + +, × (min{|A? − AB |, 1 − |A? − AB |})2, (9)

where min{|A? − AB |, 1 − |A? − AB |} is the producer’s deviation
distance along the circle. The quadratic form of the deviation
cost is used to characterize the producers’ increasing marginal
costs on the deviation, similar as in the Hotelling model [17].

The key notation is summarized in Table I. The two-stage
game is analyzed using backward induction, where Stage II
and Stage I is analyzed in Sections IV and V, respectively.

10If the non-participation induces a positive payoff, we can normalize it to
zero by adjusting the value of the opportunity cost + to be defined in (9).

11We assume that the producers choosing the same location will equally
share the donation from the customers at this location. The non-equal sharing
case will be a future work.
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IV. STAGE II: PRODUCER LOCATION EQUILIBRIUM

In Stage II, given any DSF U, we analyze the producer
location game as follows.

Definition 1 (Stage II Producer Location Game).
• Players: all producers;
• Strategies: each producer preferring any location ? ∈
L selects a location B ∈ L. The aggregate strategy is
represented by x = (G?B ,∀?, B ∈ L);

• Payoffs: � ?B (U, x) for each producer preferring a location
? ∈ L and choosing a location B ∈ L, as defined in (7).

Next, we first define the producer location equilibrium, and
then derive the equilibrium and its corresponding features.

A. Equilibrium Definition

We first define the support correspondence. Then, we define
a producer’s best response and the producer location equilib-
rium based on such a correspondence.

1) Support Correspondence: We define a correspondence
that outputs a vector’s positive elements.

Definition 2 (Support Correspondence). For a vector z ∈
R1×!
+ , the support correspondence ((z) = {B ∈ L : IB > 0} is

the set of indices corresponding to positive elements in z.

For example, if z = (0.3, 0, 0.2, 0), then ((z) = {1, 3}.
For any strategy x? , the correspondence ((x?) = {B ∈ L :
G
?
B > 0} indicates the set of locations which are chosen by the

producers preferring location ? under the strategy x? .
2) Best Response: We now define a producer’s best re-

sponse. For a producer preferring location ? ∈ L, its best
response locations, denoted by a set �'? (U, x), are the
locations that induce the maximum producer payoff, i.e.,

�'? (U, x) = arg max
B∈L

�
?
B (U, x). (10)

Normally, the best response is defined as a correspondence of
all other producers’ strategies excluding the producer’s own
strategy. However, due to the non-atomic producer assumption,
the change of one producer’s strategy does not affect the
aggregate strategies of all the producers. This allows us to
directly write the best response as a correspondence of x.

Based on a single producer’s best response, we define a
correspondence representing the aggregate best response of
all the producers preferring location ? ∈ L:

��'? (U, x) = {z ∈ R1×!
+ :

((z) ⊂ �'? (U, x),∑B∈L IB ≤ =?}. (11)

Specifically, the aggregate best response for the producers
preferring location ? is any vector z such that (i) all its
elements (locations) with positive producer fractions belong
to �'? (U, x), and (ii) it satisfies the producer population
constraint im (5). Note that this aggregate best response
��'? (U, x) may not be unique.

3) Producer Location Equilibrium: Producer location equi-
librium is defined as the fixed point of the best response.

Definition 3 (Producer Location Equilibrium). Given any U,
producer location strategy x is an equilibrium if and only if
the aggregate strategy of the producers preferring any location
? ∈ L belongs to their aggregate best response under x, i,e.,

x? ∈ ��'? (U, x),∀? ∈ L. (12)

An interpretation of this equilibrium is that a strategy x is
an equilibrium if and only if the producers’ aggregate best
responses under the strategy x can recover this strategy x.

B. Deriving the Producer Location Equilibrium
Directly computing the equilibrium based on the best re-

sponse is challenging, due to the challenge of computing the
fixed point of the multi-dimensional best response mapping of
an ! × !-dimensional vector x = (G?B ,∀?, B ∈ L). Instead of
directly deriving the equilibrium distribution, we first prove
that the Stage II game is a potential game. Under this, all
the producers’ payoffs can be related to a common potential
function, which allows us to characterize the equilibrium by
solving a problem that maximizes the potential function. Then,
we can derive the producer location equilibrium.

We first define the potential game according to [9].

Definition 4 (Potential Game). The Stage II game with non-
atomic players is a potential game if there exists a continu-
ously differentiable potential function 5 : x → R such that

m 5 (U, x)
mG

?
B

= �
?
B (U, x),∀B, ? ∈ L. (13)

We now show that the Stage II game is a potential game.
The key proof is to identify the potential function 5 (U, x) that
satisfies equation (13). Note that there does not exist a general
methodology for doing this. We have to identify the potential
function by exploiting the specific structure of the problem.

Lemma 1 (Stage II Game as Potential Game). Given any U,
the Stage II game is a potential game with non-atomic players,
which has a potential function

5 (U, x) = U ×
∑
;∈L

∫ #̂; (x)

0
*; (" ; , I)3I −+ ×

∑
B∈L

∑
?∈L

G
?
B

−, ×
∑
B∈L

∑
?∈L

G
?
B

(
min{|A? − AB |, 1 − |A? − AB |}

)2
. (14)

Lemma 1 is proven by showing that the potential function
(14) satisfies equation (13).

Showing that the game is a potential game allows us to
characterize the Stage II producer location equilibrium by
solving an optimization problem, which is easier than finding
the fixed point of the producers’ best responses. Formally,

Theorem 1 (Producer Location Equilibrium). The set of
producer location equilibria of the Stage II game is the set
of global optimal solutions to the following problem:

x∗ (U) , arg maximize
x≥0

5 (U, x) (15a)

subject to
∑
B∈L G

?
B ≤ =? , ∀? ∈ L, (15b)
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(STAGE II-NE)

which maximizes the potential function 5 (U, x) subjecting to
producer population constraint in (5).

More specifically, a vector x is an equilibrium, i.e., x ∈
x∗ (U), if and only if there exists a pair of - ∈ R1×! and
, ∈ R!×! such that the following constraints are satisfied:

�
?
B (U, x) = `? − _?B , ∀?, B ∈ L, (16a)
_
?
B G

?
B = 0, _?B ≥ 0, G?B ≥ 0, ∀?, B ∈ L, (16b)

(∑B∈L G
?
B − =?)`? = 0, `? ≥ 0, ∀? ∈ L, (16c)∑

B∈L G
?
B ≤ =? , ∀? ∈ L. (16d)

(STAGE II-NE-CONDITION)

Proof. We have proven in Lemma 1 that the Stage II
game is a potential game, so its equilibria are the so-
lutions to Problem (STAGE II-NE) [9]. On the other
hand, the conditions (STAGE II-NE-CONDITION) are the
KKT conditions of Problem (STAGE II-NE). To show that
(STAGE II-NE-CONDITION) are the conditions for the equi-
libria, we have to show that the KKT conditions of Problem
(STAGE II-NE) is necessary and sufficient conditions to its
global optimal solutions. This is true because the 5 (U, x) in
(15a) is concave (by checking its Hessian Matrix), and the
constraint (15b) fulfills the Slater’s condition. �

The producer location equilibrium may not be unique.
However, we can show that any of the equilibria leads to
the same set of producers’ payoffs, the same set of producer
distribution, and the same platform’s payoff,

Corollary 1 (Unique Equilibrium Outputs). Under any given
U, any equilibrium of the Stage II game induces
• the same set of producers’ payoffs, i.e.,

�
?
B (U, x) = �̃ ?B (U),∀?, B ∈ L, x ∈ x∗ (U), (17)

where �̃ ?B (U) denotes the identical payoff of the producer
preferring location ? and selecting location B in any of
the producer location equilibria given U.

• the same producer distribution, i.e.,

#̂; (x) = #̃; (U),∀; ∈ L, x ∈ x∗ (U), (18)

where #̃; (U) denotes the identical number of producers
serving the customers preferring location ; in any of the
producer location equilibria given U.

• the same platform’s payoff, i.e.,

� (U, x) = � (U),∀x ∈ x∗ (U), (19)

where � (U) denotes the identical platform’s payoff under
any of the producer location equilibria given U.

Specifically, the dual variables of Problem (STAGE II-NE),
i.e., - and ,, are unique, because the constraints (15b) are
linearly independent [23]. Hence, according to (16a), under a
fixed U, any of the equilibria induces the same set of produc-
ers’ payoffs, i.e., � ?B (U, x) = �̃

?
B (U),∀?, B ∈ L, x ∈ x∗ (U).

Based on this, we can show that under a fixed U, any of the
equilibria induces the same set of cumulative number of pro-
ducers at all locations, i.e., #̂; (x) = #̃; (U),∀; ∈ L, x ∈ x∗ (U).
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Fig. 3. The impact of U on producer location equilibrium: (a) , = 0
and + = 0.1, under which producers always perfectly match the customers’
preferences; (b) , = 0.4 and + = 0, under which producers always fully
participate.

This is because the mapping from the set of producers’ payoffs
(defined in (7)) to the set of cumulative number of producers at
the locations is a one-to-one correspondence, due to the strictly
increasing donation function in the number of producers as in
Assumption 1. Hence, from the platform’s point of view, given
any U, it achieves the same payoff under any of the producer
location equilibria in Stage II, as its payoff (defined in (6))
depends on only the cumulative number of producers at those
locations, i.e., #̂; (x), ; ∈ L.

C. Impact of U on Producer Location Equilibrium

Based on the conditions in Theorem 1, we show how the
producer location equilibrium changes with DSF U. A key
insight is that a larger U leads to more producer participation
and a better match to the customers’ preferences.

Given any opportunity cost, deviation cost, and producers’
and customers’ preferences, the producer location equilibrium
changes with U as follows.

Proposition 1 (Impact of U on Producer Location Equilib-
rium). As U increases, for any x ∈ x∗ (U),
(1) the total participation (i.e,

∑
B∈L

∑
?∈L G

?
B ) increases;

(2) the total deviation (i.e,
∑
B∈L

∑
?∈L G

?
B (min{|A? − AB |, 1−

|A? − AB |})2) increases.

Specifically, the potential function (14) is a weighted sum of
three functions with the corresponding weights U, + , and , ,
respectively. As these weights change, the producer location
equilibrium changes accordingly as in Proposition 1. The proof
is given in Appendix A.

Figure 3 shows the impact of U on the producer location
equilibrium. The donation function is the one defined in (4).
We set # = " = 1000 and  = 1. The x-axis represents
the location. The y-axis shows the number of producers or
customers. The “producer" and “customer" curves correspond
to the producers’ and customers’ location preferences, respec-
tively. The curves labeled with U = 0.1, 0.2, and 0.5 are the
producer location equilibrium under the particular U.

Figure 3 (a) shows the results with , = 0 and + = 0.1,
under which producers always perfectly match12 the cus-
tomers’ preferences due to the zero deviation cost , . In

12The term “perfectly match" means that all the locations induce the same
average donation for the producers such that no producer can increase its
payoff by further deviation even if there is no deviation cost.
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Fig. 4. The impact of U under the producer preference distribution that
maximizes the total donation (with , = 0.4, + = 0): (a) producer and
customer distributions; (b) total donation.

this case, under any U, producers are distributed in a shape
that is similar as the customers’ preferences. As U increases,
the producer participation increases, i.e., the total number of
participating producers increases. Figure 3 (b) shows the result
with , = 0.4 and + = 0, under which producers always fully
participate due to the zero opportunity cost + . In this case, as
U increases, the producer matching increases, i.e., producers’
location choices deviate from producers’ preferences (i.e., the
blue solid line) to match customers’ preferences (i.e., the red
dash line). To sum up, a larger U leads to more producer
participation and a better match to the customers’ preferences.

D. Impact of U on Total Customer Donation

Based on Theorem 1, we further show how the total cus-
tomer donation (i.e.,

∑
;∈L �; (" ; , #̃; (U))) changes with DSF

U. It is intuitive to expect that as U increases, the total donation
increases, because the producers increasingly deviate to match
the customers’ preferences. However, we show that this is not
always true for the following reason. The increasing deviation
of the producers to match the customers’ preferences implies
a decreasing number of the producers selecting the locations
preferred by fewer customers. It also implies an increasing
number of producers selecting the locations preferred by more
customers. Due to the concavity of the donation function, the
value of the donation decreasing at the locations with fewer
customers (resulting from the decreasing number of producers
selecting those locations) may be greater than the value of
the donation increasing at the locations with more customers
(resulting from the increasing number of producers selecting
those locations). Hence, as U increases, the total donation may
not increase. We also show that under some particular donation
functions, as U increases, the total donation increases.

We first show two examples of how total donation changes
with U in Figures 4 and 5. We consider a donation function
�; ("†, #†) = "†×#†/(4#†+8) (which satisfies Assumption
1), under which the producer distribution maximizing the total
donation is not the producer distribution perfectly matching the
customers’ preferences. The Figures 4 (a) and 5 (a) show the
customer preference (dash triangle line), producer preference
(solid reverse triangle line), and the producer equilibrium
distributions when U = {0.01, 1} at different locations. The
Figures 4 (b) and 5 (b) show how the total donation changes
with U. In Figure 4, we set the producer’s inherent preference
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Fig. 5. The impact of U under the producer preference distribution that does
not maximize the total donation (with , = 0.4, + = 0): (a) producer and
customer distributions; (b) total donation.

distribution to be the one that maximizes the total donation,
under which any deviation will lead to total donation decreas-
ing. Consequently, although imposing a larger U may lead to
a better match to customers’ preferences (triangle dash line)
in Figure 4 (a), it leads to a lower total donation in Figure
4 (b). In Figure 5, the producer preference distribution is
not the one that maximizes the total donation, under which
deviation may lead to total donation increasing. Hence, a larger
U may lead to a higher donation in Figure 5 (b), because
of the resulting better match between the producers and the
customers in Figure 5 (a).

Remark 1 (Impact of U on Total Donation). As U increases,
the total donation is not necessarily monotonically increasing
or decreasing, which depends on the customers’ and produc-
ers’ preferences over the service attribute.

However, under some specific donation function, the total
donation increases in U.

Lemma 2 (Impact of U on Total Donation under a Special
Case). If the donation function is in the form of �; ("†, #†) =
00 ("†/#†)01#† with 01 < 1 for ; ∈ L, the total donation∑
;∈L �; (" ; , #̃; (U)) increases in U.

The detailed proof is given in Appendix B. Specifically,
under the donation function �; ("†, #†) = 00 ("†/#†)01#†

with 01 < 1 for ; ∈ L, the following equality holds:∑
;∈L

∫ #̂; (x)

0
*; (" ; , I)3I = 1

1 − 01

∑
;∈L

�; (" ; , #̂; (x)). (20)

By substituting (20) into the potential function (14), according
to Problem (STAGE II-NE), we can prove that as U increases,
the total donation

∑
;∈L �; (" ; , #̃; (U)) increases.

V. STAGE I: PLATFORM DSF DECISION

In Stage I, the platform chooses the DSF U to maximize
its payoff. We first present the platform’s payoff optimization
problem. As the problem is non-convex and cannot be solved
in closed-form, we derive the lower-bound and upper-bound
of the optimal solution. Finally, we demonstrate how system
parameters affect the optimal DSF.
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A. Platform’s Payoff Maximization Problem

In Stage I, the platform selects the optimal fraction U∗ that
maximizes its payoff. Formally,

U∗ , arg max
U∈[0,1]

� (U). (STAGE I-NE)

Here � (U) is the platform’s payoff under the producer location
equilibrium given an U, as defined in (19).

Problem (STAGE I-NE) is a non-convex optimization prob-
lem due to the non-convex objective function � (U). Specifi-
cally, � (U) is a piece-wise function that is not always differen-
tiable. In addition, this piece-wise function may not be quasi-
concave, so we cannot use an effective bisection algorithm
[24] to solve the problem. Hence, it is difficult to derive the
closed-form optimal solution to Problem (STAGE I-NE).

B. Optimal Solution Bound and Approximate Solution

Despite the non-convexity of Problem (STAGE I-NE), we
can characterize the lower-bound and upper-bound of the opti-
mal solution. The bounds reveal some insights over the optimal
DSF. Meanwhile, those bounds shrink the range of optimal
DSF, within which we would use an exhausted searching
method to obtain the optimal DSF approximately.

1) Lower-Bound of U∗: The lower-bound of the optimal
DSF U∗ is given as follows:

Proposition 2 (Lower-Bound of U∗). The optimal U∗ is lower-
bounded by U as follows:

U = min
{
U1, U2

}
, (21)

where U1 is the optimal solution to the following problem:

maximize U (22a)

subject to U ×
∑
;∈L?

*; (" ; , G;; × #) = +,∀? ∈ L, (22b)

G;; ≤ =
; ,∀; ∈ L, (22c)

variables 0 ≤ U ≤ 1, G;; ≥ 0,∀; ∈ L, (22d)

(LOWER BOUND - 1)

and U2 is the optimal solution to the following problem:

maximize (1 − U) ×
∑
;∈L

�; (" ; , G;; × #) (23a)

subject to U ×
∑
;∈L?

*; (" ; , G;; × #) = +,∀? ∈ L, (23b)

variables 0 ≤ U ≤ 1, G;; ≥ 0,∀; ∈ L. (23c)

(LOWER BOUND - 2)

The detailed proof is shown in Appendix C. For the defi-
nition of U1 and U2 in Problems (LOWER BOUND - 1) and
(LOWER BOUND - 2), we consider the scenario that at the
producer location equilibrium, each producer participating in
the platform chooses its preferred location and gains a zero
payoff. In this case, each participating producer is already
gaining his maximum payoff (i.e., the best response to other
producers’ strategy choices), and deviating to another location
(other than his current preferred location) will only lead to

a zero or negative payoff gain. We refer to this scenario
as non-deviation producer participation. Under this case,
the conditions (16a), (16b), and (16c) in (STAGE II-NE-
CONDITION) can be transformed into one constraint, as in
(22b) and (23b). In Problem (LOWER BOUND - 1), U1 is
the maximum value of the DSF U in Stage I that leads to the
non-deviation producer participation scenario at the producer
location equilibrium, given the producer population constraint
(23c). In Problem (LOWER BOUND - 2), U2 is the value of
the DSF U in Stage I that maximizes the platform’s payoff,
under the relaxation of the producer population constraint.
That is, U2 corresponds to the optimal DSF if there is no
producer population constraint. Consequently, if U ≤ U1 ≤ U2,
then the platform’s payoff increases in U until U = U1,
above which the non-deviation producer participation scenario
may no longer hold at the producer location equilibrium. If
U ≤ U2 ≤ U1, the platform’s payoff increases in U until
U = U2, above which the platform’s payoff decreases with
U. Hence, the platform’s payoff always increases in U when
U ≤ min

{
U1, U2

}
, so min

{
U1, U2

}
is the lower-bound of the

optimal U∗.
Intuitively, U1 reveals how hard it is to motivate producers

to deviate from their preferred locations (in order to better
match the customers’ preferences). Meanwhile, U2 reveals how
beneficial it is for the platform to increase U under the scenario
of non-deviation producer participation. If either it is more
difficult to motivate (i.e., larger U1) or it is more beneficial
(i.e., larger U2), the lower bound of U∗ is larger such that the
platform provides more incentives to the producers.

2) Upper-Bound of U∗: It is difficult to characterize the
upper-bound of the optimal DSF U∗ for any  (where  

is the number of locations a producer can serve), as the
expression of the producer location equilibrium changes in U.
Next, we first show the upper-bound of U∗ under  = 1. Then
we numerically demonstrate that for some particular donation
functions, the same upper-bound applies for any  ≥ 1.

The upper-bound of U∗ under  = 1 is as follows:

Proposition 3 (Upper-Bound of U∗ under  = 1). The optimal
U∗ is upper-bounded by U that satisfies

U = max{[;," ; (#̃†
;
),∀; ∈ L}, (24)

where #̃†
;

is the value that satisfies [�; (" ; , #̃
†
;
)]
#̃
†
;

= + for

; ∈ L, and function [;," † (#†) is defined in (1).

The proof is given in Appendix D. Specifically, the upper-
bound U is characterized by the elasticity of the customers’
donation. When the elasticity is larger, the customers’ dona-
tion is more sensitive to the number of producers serving
their preferred locations. Thus, the platform should increase
DSF to incentivize producers to participate and to match
customers’ preferences. Such an upper-bound exists when the
following conditions hold: lim# †→0 [�; ("†, #†)]# † ≥ + and
lim# †→∞ [�; ("†, #†)]# † ≤ + for all "† ∈ R+, ; ∈ L. Intu-
itively, these conditions imply that when there is no producer
choosing a location, the marginal donation increase (by adding
a producer to the location) is sufficiently large. When there are
infinite number of producers choosing a location, the marginal
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donation increase is sufficiently small. Under these conditions,
#̃
†
;

always exists and is unique for ; ∈ L due to the strictly
concavity of �; ("†, #†) in #†.

According to Proposition 3, we could obtain the upper-
bound of the optimal DSF under the donation function in (4):

Corollary 2 (Upper-Bound of U∗ under  = 1). Under
donation function �; ("†, #†) = 410

(
"†/#†

)11
#† for ; ∈ L,

the optimal U∗ is upper-bounded by U that satisfies

U = 1 − 11. (25)

When the donation function is the one defined in (4), we
perform a simulation to show that Corollary 2 holds for any
 ≥ 1. We evaluate the results under 11 = {0.2, 0.4, 0.6, 0.8}.
For each value of 11, we randomly generate 1000 simulation
rounds, each of which is generated based on the following
distributions:  follows a discrete uniform distribution over
{1, 2, ..., 10}; " ; and # ; follow a discrete uniform distribution
over {1, 2, ..., 1000},∀; ∈ L; + follows a uniform distribution
within [0, 0.4]; , follows uniform distribution within [0, 0.8].
For each simulation, we perform an exhausted searching over
discrete set U = {0.01, 0.02, ..., 1} to find the optimal U∗

approximately. The key observation is as follows.

Remark 2 (Upper-Bound of U∗ under  ≥ 1). The simulation
result suggests that under the donation function in (4), the
upper-bound of U∗ is equal to 1 − 11 for general  ≥ 1, the
same as the upper-bound in Corollary 2 for  = 1.

3) Computing the Optimal U: The upper-bound and lower-
bound shrink the range of the optimal DSF U∗. To compute
the optimal DSF, we can perform an exhausted searching
within interval [U, U]. Specifically, we divide the internal
into � segments. The approximate optimal solution is U∗

�
=

arg max{� (U) |U ∈ {U + (U − U) 9/(� − 1), 9 = 0, 1, ..., � − 1}}.
Let U∗ = arg maxU∈[0,1] � (U) be the actual optimal solution.
We can prove that the gap between � (U∗

�
) and � (U∗) is

bounded. Formally,

Lemma 3 (Optimal Solution Approximation). Given any n ,
there always exists a threshold � such that |� (U∗

�
) −� (U∗) | ≤

n for any � ≥ �.

Proof. We first prove that the platform’s payoff � (U) is
continuous in U. Specifically, � (U) can be written as follows:

� (U) =maximize
U∈[0,1]

(1 − U)
∑
;∈L

�; (" ; , #̂; (x)) (26a)

subject to x = arg max
x≥0

5 (U, x). (26b)

According to Maximum Theory [25],13 x is continuous in U
and further � (U) is continuous in U.

Then, we prove Lemma 3. Due to the continuity of � (U)
in U, for any n > 0, there always exists a Xn > 0 such that
|� (U) − � (U∗) | ≤ n for any |U − U∗ | ≤ Xn . We define � =
d1/Xn e+1. For any � ≥ �, there always exists an Û (which may
not be equal to U� ) such that |Û − U∗ | ≤ Xn , so that |� (Û) −
� (U∗) | ≤ n . According to the definition of U� , |� (U� ) −
� (U∗) | ≤ |� (Û) − � (U∗) | ≤ n . �

13For a function 5 ∗ : Θ → R defined by 5 ∗ (\) = sup{ 5 (G, \) : G ∈
� (\) }, if � is continuous in \ , then 5 ∗ is continuous.
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Fig. 6. An example with different # 1 and # 2: (a) optimal U∗; (b) optimal
platform’s payoff � (U∗) . The area within the red dash boundaries correspond
to the case where the non-deviation producer participation scenario happens
at the producer location equilibrium under the optimal U∗ in Stage I.

C. Impact of + and , on the Optimal DSF U∗

We characterize the impact of costs + and , on U∗, as
given in the following proposition.

Proposition 4 (Impact of + and , on U∗). There exists a
+◦ such that for all + ≥ +◦, the optimal DSF U∗ = U2,
under which producers do not fully participate at the pro-
ducer location equilibrium (i.e., `? = 0 for all ? ∈ L in
(STAGE II-NE-CONDITION)). In addition, there exists a ,◦

such that for all , ≥ ,◦, the optimal U∗ = Ũ, where the
producers never deviate at the producer location equilibrium.
Here Ũ is the optimal solution to the following problem:

maximize (1 − U) ×
∑
;∈L

�; (" ; , G;; × #), (27a)

subject to U ×
∑
;∈L?

*; (" ; , G;; × #) ≥ +,∀? ∈ L, (27b)

G;; ≤ =
; ,∀; ∈ L, (27c)

variables 0 ≤ U ≤ 1, G;; ≥ 0,∀; ∈ L. (27d)

The proof is provided in Appendix E. The insights of
Proposition 4 are as follows. When the opportunity cost is
larger than the threshold +◦, the platform should set the DSF
to be U2 (which is defined in (LOWER BOUND - 2)) and give
up motivating producer participation. When the deviation cost
, is larger than the threshold ,◦, the platform should set the
DSF to be Ũ and give up motivating producers to match the
customers’ preferences. The Ũ is the DSF that maximizes the
platform’s payoff where no producer deviates.

VI. NUMERICAL RESULTS

In this section, we use simulations to understand how the
optimal DSF and the platform’s optimal payoff are affected by
certain factors. These factors include the mismatch between
the producers’ and customers’ preferences, the producers’
opportunity cost, and their deviation cost.

Our numerical results show several insights. (i) As the
mismatch between the producers’ and customers’ preferences
increases, the optimal DSF either monotonically increases or
decreases. However, the platform’s optimal payoff always de-
creases due to its increasing efforts on balancing the mismatch.
Hence, a lower degree of preference mismatch benefits the
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platform more. (ii) As the opportunity and deviation costs
increase, the optimal DSF changes non-monotonically. How-
ever, the platform’s optimal payoff always decreases due to its
increasing compensation on the costs. Thus, lower opportunity
and deviation costs benefit the platform more.

A. Impact of the Preference Mismatch

We aim to study how the mismatch between the producers’
and customers’ preferences affects the optimal DSF and the
platform’s optimal payoff. To visually demonstrate the impact,
we consider an example with two locations L = {0, 1} and
 = 1. We set + = 0.1 and , = 0.1. We assume that the
number of customers is the same at both locations, i.e., "1 =
"2 = 500.14 We evaluate the system results under different
#1 and #2 as in Figure 6. The results include the optimal U∗

in Figure 6 (a) and the optimal platform’s payoff � (U∗) in
Figure 6 (b). The x-axis and y-axis correspond to #1 and #2,
respectively. The colors represent the corresponding values.

In Figures 6 (a) and 6 (b), the areas within red dash
boundaries correspond to the case #1 ≥ #◦ = 400 and
#2 ≥ #◦ = 400, under which the non-deviation producer
participation scenario happens at the producer location equi-
librium under the optimal U∗ in Stage I. The dot blue lines
correspond to fixed total number of producers, i.e., 1© for
#1 + #2 = 600, 2© for #1 + #2 = 1000, and 3© for
#1 + #2 = 1400. Along these lines, moving towards the two
endpoints implies a larger difference between #1 and #2, i.e.,
a larger |#1 − #2 |. This further implies a worse match to the
customers’ preference (as "1 = "2). We use solid arrows to
denote the directions that U∗ and � (U∗) increase.

Based on Figures 6 (a) and 6 (b), we observe the following.

Remark 3 (Impact of Preference Mismatch on U∗ and � (U∗)).
In Figures 6 (a) and 6 (b), if both producer populations #1

and #2 are large (i.e., inside the red dash boundary), a larger
|#1 − #2 | (i.e., a worse match to the customers’ preference)
leads to a smaller U∗ and a smaller � (U∗); otherwise, a larger
|#1 − #2 | leads to a larger U∗ and a smaller � (U∗).

Specifically, when both producer populations are large
(i.e., #1 ≥ 400 and #2 ≥ 400), producers never deviate.
Under this case, the bottleneck of the platform’s payoff is
the minimum producer population, i.e., min{#1, #2}. Hence,
when the difference |#1 − #2 | is larger (i.e., the min{#1, #2}
is smaller under the fixed values of #1 + #2 along the
dot blue lines), the platform should set a smaller U∗, as
imposing a high motivation is not beneficial due to the smaller
min{#1, #2}. Meanwhile, the platform gains a smaller optimal
payoff � (U∗) due to the smaller min{#1, #2}. On the other
hand, when either of the producer populations is small (i.e.,
either #1 < 400 or #2 < 400), producers may deviate from the
location preferred by more producers to the location preferred
by less producers. Hence, when the difference |#1 − #2 |
is larger (i.e., the mismatch between the producers’ and
customers’ preferences is more severe), the platform should
set a larger U∗ to further motivate producer deviation (to match

14When the customers are non-uniform distributed, the shape of the
simulation figures will change, while the key insights will be the same.
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Fig. 7. An example with different + and , : (a) optimal U∗ (with thresholds
, ◦ = 4 and + ◦ = 20); (b) optimal platform’s payoff � (U∗) .

the customers’ preferences). However, the platform’s optimal
payoff is smaller due to its profit share with the producers for
motivating the deviation.

B. Impact of Opportunity and Deviation Costs

We aim to understand how the opportunity and deviation
costs affect the optimal DSF and the platform’s optimal
payoff. We consider a location set L = {0, 1, ..., 9} with
A; = 0.1×;,∀; ∈ L, and  = 1. We set # ; = 45×(2+cos(2cA;))
and " ; = 45× (2 + sin(2cA;)), where the producers’ and cus-
tomers’ preferences are mismatched. We evaluate the results
under different + and , in Figure 7, including the optimal
U∗ in Figure 7 (a) and the optimal platform’s payoff � (U∗) in
Figure 7 (b). The x-axis and y-axis correspond to + and , ,
respectively. The colors represent the corresponding values.

Based on Figures 7 (a) and 7 (b), we observe the following.

Remark 4 (Impact of Costs on U∗ and � (U∗)). In Figures 7
(a) and 7 (b), as , increases, U∗ non-monotonically changes
when , < ,◦ and remains unchanged when , ≥ ,◦. As
+ increases, U∗ non-monotonically changes when + < +◦

and remains unchanged when + ≥ +◦. The platform’s optimal
payoff � (U∗) decreases in both , and + .

In terms of U∗, when either the deviation cost or the oppor-
tunity cost is small, U∗ non-monotonically changes with , or
+ , respectively. When either of them is large, U∗ is independent
of + and, , which is consistent with Proposition 4. In terms of
� (U∗), as the costs + and , increase, the platform’s optimal
payoff decreases, since the platform imposes an increasing
effort on compensating the costs of the producers, so as to
provide them sufficient participation and deviation incentives.

VII. CASE STUDY WITH REAL DATA FROM TWITCH

In Section VI, we perform simulations to show the optimal
DSF and the platform’s payoff under different system settings.
In practice, the system parameters (such as the producers’ pref-
erence distribution) are unknown to the platform, which makes
it challenging to determine the optimal DSF. In this section,
we aim to demonstrate how to compute the platform’s optimal
DSF with only the producers’ actual behaviors (instead of their
inherent preferences) using data collected from Twitch. The
study also suggests that under the collected data and our model
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Fig. 8. A circular service attribute model with time of day as the service
attribute. This model contains 24 × 4 = 96 locations, each corresponding to
a period of 15 minutes in a day. Each streamer streams for an consecutive
period of two hours (i.e., his or her service covers 2 × 4 = 8 locations).

settings, Twitch may improve its payoff by reducing the DSF
(comparing with its current practice).

This case study is based on the real-world dataset that we
collected from Twitch every 15 minutes from Nov. 05 to
Nov. 20, 2017. The information contains user_id, game_id,
streamer_type, viewer_count, started_at, and language.

We first discuss the system setting. We then explain how to
map from the producers’ choices of the time of day (of the
stream) to their preferences. Note that the producers’ choices
are observable from the collected data, while their preferences
are not directly observable. Finally, we derive the optimal DSF.

A. System Setting

1) Service Attribute: We use the data of game League of
Legends. We consider the service attribute of the time of
day, where the service attribute setting is shown in Figure
8. There are 24 × 4 = 96 locations (which corresponds to
the time of day at which the data are collected), denoted by
L = {0, 1, ..., 95}. We assume that each streamer streams for
an consecutive period of 2 hours, i.e.,  = 2× 4 = 8, which is
the average stream time of the streamers in League of Legends.
For example, as in Figure 8, when a streamer selects 1am
(location 4), he will continue to serve until 3am (location 12),
represented by the shaded area, i.e., L4 = {4, 5, ..., 11}.

2) Mass of Producers: Producers are distributed along
the circle according to their preferences, denoted by TPF =

{#0
PF, #

1
PF, ..., #

95
PF } (i.e., how many producers prefer to start

at each location), which cannot be observed directly from the
dataset. These producers make decisions on their actual start
over the locations. Under the producers’ decisions, let TC-EQ =

{#0
C-EQ, #

1
C-EQ, ..., #

95
C-EQ} denote the cumulative number of

producers serving customers at each location (considering the
producers’ two-hour streaming), which can be observed from
the dataset. We are going to estimate the preference TPF based
on the observed TC-EQ, and then compute the optimal DSF.

3) Mass of Customers: Customers are distributed along
the circle according to their preferences, where the number
of customers at each location is derived from the dataset.
These customers donate to the producers who select their
preferring locations. The donation amount is given by the
donation function defined in (4) from the dataset in [13].

4) Current DSF: On Twitch, viewers purchase 100 bits
(i.e., a virtual currency on Twitch) with $1.4, while streamers
can exchange 100 bits with $1. Hence, the current DSF
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Fig. 9. A fitting example under the parameters (21, 22, 23) minimizing
RMSE. The streamers deviate from T̂ C-PF to T̂ C-EQ to better match the
viewers’ preferences.

U = 1/1.4 ≈ 0.71. We are going to derive the optimal DSF
based on our model, and compare the result with this current
practice of Twitch.

B. Mapping from Producer Distribution to Their Preference

Before deriving the optimal DSF, we need to first estimate
the producers’ inherent preference locations TPF based on the
observed cumulative producer distribution TC-EQ.

Let T̂PF = {#̂0
PF, #̂

1
PF, ..., #̂

95
PF } denote the estimated

preferences. Under the estimated preference, let T̂C-EQ =

{#̂0
C-EQ, #̂

1
C-EQ, ..., #̂

95
C-EQ} denote the fitted cumulative number

of producers serving customers at each location if all the
producers follow the producer location equilibrium. We aim
to guess the most proper T̂PF such that the root-mean-square-
error (RMSE) between the observed TC-EQ and the fitted T̂C-EQ

is minimized.
We assume that the producer actual preference TPF follows

a sine function, i.e., the number of producers at a location
; ∈ L is ((;) = 21 × sin(2c; + 22) + 23. Although we cannot
observe the shape of TPF from the dataset, we can verify
through simulation that a sine function preference TPF is likely
to output a sine function equilibrium TC-EQ, where the TC-EQ

is observed to be a sine function from the dataset as its lag
plot15 follows a circular shape [26].

To estimate TPF, the key is to estimate the set of parameters
(21, 22, 23). We choose the parameters that minimize the
RMSE between the known cumulative distribution TC-EQ and
fitted cumulative distribution T̂C-EQ:

RMSE =

√∑
;∈L

(
# ;C-EQ − #̂ ;C-EQ

)2
/!. (28)

Figure 9 shows the fitting result (under the parameters
(21, 22, 23) that lead to the minimum RMSE).16 The “Known
TC-EQ" is the observed actual cumulative producer distribution.
The “Fitted (Equilibrium) T̂C-EQ" is the fitted cumulative pro-
ducer distribution in equilibrium under the estimated producer
preference T̂PF, and the “Fitted (Preference) T̂C-PF" is the
fitted cumulative producer distribution when all the producers

15Lag plot shows the periodical feature of samples {-1, -2, · · · , -# } by
plotting points (-8 − 1, -8) for all 8 = 1, 2, · · · , # .

16The probability density function of the fitting residuals roughly follows a
normal distribution with zero mean. This implies that the residuals are random,
which suggests that our fitting model works well [26].
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TABLE II
OPTIMAL DSF.

+ \, 2 10 20 100 200 1000
0.2 0.08 0.09 0.08 0.07 0.07 0.07
1 0.32 0.31 0.30 0.28 0.28 0.28
2 0.39 0.38 0.38 0.40 0.40 0.40
4 0.40 0.40 0.40 0.40 0.40 0.40

TABLE III
PLATFORM’S PAYOFF INCREASE UNDER THE OPTIMAL DSF IN TABLE II,

COMPARING WITH THAT UNDER 0.71 SET BY TWITCH.

+ \, 2 10 20 100 200 1000
0.2 215% 205% 206% 217% 217% 218%
1 132% 120% 120% 132% 132% 132%
2 55% 54% 53% 43% 43% 43%
4 41% 41% 41% 41% 41% 41%

choose their preferring locations under the estimated producer
preference T̂PF. We can see that the streamers deviate from
“Fitted (Preference) T̂C-PF" to “Fitted (Equilibrium) T̂C-EQ" to
better match the viewers’ preferences (the red dash line).

C. Deriving Optimal Donation-Split-Fraction

Based on the estimated T̂PF, we derive the platform’s
optimal DSF based on Theorem 1 and the searching method
mentioned in Section V-B3. Table II shows the optimal DSF
values under different values of + and , (as we do not know
the actual values). Table III shows how much the platform’s
payoff increases under the optimal DSF in Table II, comparing
with that under 0.71 currently implemented by Twitch.

In both tables, we use bold fonts to represent the values
corresponding to + = 2 and , = 10, because this combination
of parameters leads to the minimum RMSE (defined in (28))
over all the possible values (hence is most likely to be the one
in reality). The key observations are as follows.

Remark 5 (Optimal U∗). In Table II, the bold text suggests
that the optimal DSF should be U∗ = 0.38. Furthermore, all
the optimal DSF values under various + and , values are
significantly smaller than 0.71 currently adopted by Twitch.

Remark 6 (Platform’s Payoff Increase). In Table III, the bold
text suggests that the platform’s payoff can be increased by
54% under the optimal DSF choice of U∗ = 0.38, comparing
with that under 0.71 currently adopted by Twitch.

We would like to clarify that our case study results are
derived based on our abstract model and the limited amount of
data that we collected. On real-world live streaming platforms,
however, many other factors have to be taken into account,
such as the cultural and psychological factors of the streamers,
the social interactions among them, as well as the reputation
and future marketing plan of the platform.

VIII. CONCLUSION

In this paper, we focused on the study of donation-based
markets, which have been embraced by various platforms in
practice but have not been well-studied in the existing litera-
ture. In our study, we characterized the producers’ behaviors

in terms of their participation and service attribute decisions
and the platform’s behavior in terms of its DSF choice. Our
main findings are summarized as follows.
• First, regarding the producer service attribute selection,

if a platform aims at achieving a better match between
the streamers’ service attribute choices and the viewers’
preferences, then it will increase DSF. However, if the
platform aims at enhancing the total donation from the
viewers, then increasing DSF may not be helpful.

• Second, regarding the platform’s optimal DSF, it does not
necessarily increase or decrease with the mismatch be-
tween the producers’ and customers’ preferences. Mean-
while, it changes non-monotonically with the producers’
opportunity and deviation costs. Hence, there may not
exist a particular rule for updating the optimal DSF in
response to the changes of the producers’ and customers’
preferences as well as the costs of the producers.

• Third, the platform’s optimal payoff decreases with the
mismatch between the producers’ and customers’ prefer-
ences. It also decreases with the opportunity and deviation
costs of the producers. Hence, in practice, if the platform
can reduce the mismatch between the producers’ and
customers’ preferences (or the opportunity and deviation
costs of the producers) through particular governance
methods, then the platform’s payoff can be improved.

• Fourth, our case study on the dataset from Twitch demon-
strates the approach of computing the platform’s optimal
DSF with only the producers’ actual behaviors (instead
of their inherent preferences) for practical systems.

This work serves as a first step towards understanding
the operation and revenue management in donation-based
markets. Our theoretical results were conducted based on
the assumption that the platform and producers are rational.
Meanwhile, as we focused on the donation-based markets, we
did not capture other factors of more generic online platforms,
such as the social interactions among producers and other
monetization methods. There are several directions to extend
this work. First, it is interesting to incorporate the idea of
bounded human rationality (from behavioral economics) into
the systems. For example, producers may regard the donation
sharing with the platform as a loss. Those producers may
be loss aversion so that they want to avoid the losses more
than seeking the equivalent gains. Second, we can take into
account the social interactions among the producers, e.g.,
understanding how the behavior of a producer affects those of
others. Third, our analysis of the two-stage game (in Sections
IV and V) is under complete information. To address the
incomplete information scenario, it would be interesting to
propose a distributed algorithm for Stage II game in order
to enable the producers to achieve the producer location
equilibrium in a decentralized manner. It is also beneficial to
propose an online algorithm for Stage I game to enable the
platform to determine the optimal DSF in an online fashion.
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