
1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

1

Online Bitrate Selection for Viewport Adaptive
360-Degree Video Streaming

Ming Tang and Vincent W.S. Wong

Abstract—360-degree video streaming provides users with immersive experience by letting users determine their field-of-views (FoVs)
in real time. To efficiently utilize the limited bandwidth resources, recent works have proposed a viewport adaptive 360-degree video
streaming model by exploiting the bitrate adaptation in spatial and temporal domains. In this paper, under this video streaming model,
we propose an online bitrate selection algorithm to enhance the user’s quality of experience (QoE). This is achieved by characterizing
the user’s personalized FoV and real-time downloading capacity in an online fashion. We address the unknown user-specific FoV by
introducing the reference FoV and design an online bitrate selection algorithm to learn the difference between the user’s actual FoV
and the reference FoV. We prove that as the number of video segments increases, the performance of the proposed online algorithm
approaches the optimal performance asymptotically, with a bounded error. We perform trace-driven simulations with real-world
datasets. Simulation results show that under the scenario where the available video bitrates are relatively high, our proposed algorithm
can improve the user’s viewing quality level between 4.2%� 29.4% and reduce the average intra-segment quality switch by at least
12.4% when compared with several existing methods.

Index Terms—Adaptive 360-degree video streaming, virtual reality, quality of experience (QoE), online convex optimization, online
gradient descent.

F

1 INTRODUCTION

1.1 Background and Motivation

With the development of virtual reality (VR) technologies,
360-degree video streaming is becoming increasingly popu-
lar. With such 360-degree videos, users can determine their
field of views (FoVs) in real time by controlling the direction
of the streaming devices, with which users can have immer-
sive video streaming experience. Currently, there are various
360-degree video content providers (e.g., YouTube) and VR
devices supporting 360-degree videos (e.g., Sony PlaySta-
tion VR [1]). An example of a 360-degree video streaming in
a wireless network is shown in Fig. 1. The users watching
the same 360-degree video can have heterogeneous FoVs
(represented by the solid rectangles).

The 360-degree real-time interaction, however, is at the
expense of additional bandwidth consumption. This is be-
cause all the 360-degree scenes, including the scenes that
are being viewed or not being viewed by the users, have to
be downloaded in real time in response to the users’ inter-
actions. This additional bandwidth consumption imposes
the requirement of efficient allocation of radio resources
in wireless networks, so as to provide good quality of
experience (QoE) video streaming services.

To improve the user’s QoE, a promising approach is to
use viewport adaptive 360-degree (VA360) video streaming
[2]–[4], which exploits bitrate adaptation in both spatial
and temporal domains. Specifically, in the encoding process,
an entire video is divided into multiple segments, each
of which corresponds to a video segment within a certain
playback time period. Each segment is further spatially

Ming Tang and Vincent W.S. Wong are with the Department of Electrical
and Computer Engineering, The University of British Columbia, Vancouver,
Canada.
E-mail: {mingt, vincentw}@ece.ubc.ca

…
…

User A User B
User C

User A’s video streaming
User B’s video streaming

Fig. 1: 360-degree video streaming in a wireless network. Users A and
B watch the same video, but they have heterogeneous FoVs.

Temporal division (five segments)

Spatial division (24 tiles)

1 52 3 4

Time

Quality set:
{Low, High}

High

High

High

High

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Temporal division
1 2 3 4 5

Spatial division

High

High

Low

Low

High

High

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low High

High

Low

High

High

Low

Low Low Low Low

Low

Low

Low

Low

Low

Low

Time

(a) (b)

Fig. 2: Viewport adaptive 360-degree video streaming: (a) temporal and
spatial divisions in video encoding; (b) bitrate adaptation in both spatial
and temporal domains in video streaming.

divided into multiple tiles. Each tile corresponds to the
video of a viewing area during the segment playback time
period. Each tile is encoded at multiple quality levels, each
corresponding to a bitrate. During video streaming, video
players can select the quality level of each tile, adapting
to human behaviors and real-time network conditions. For
example, in Fig. 2 (a), in the encoding process, each video
is temporally divided into five segments. Each segment
is spatially divided into 4 ⇥ 6 = 24 tiles, each of which
is encoded at two quality levels {Low, High}. In Fig. 2
(b), when streaming the video, the video player can select
the quality level of each tile to adapt to the variation of

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

2

the user’s FoV (represented by the solid rectangles) and
network condition in order to improve the user’s QoE. For
example, if downloading all the tiles in high quality level
will lead to rebuffering under the user’s real-time network
condition, then the video player can select high quality level
for the tiles in the user’s FoV and low quality level for the
others to efficiently use the bandwidth.

In practice, however, the user’s FoV for viewing a
segment is unknown when the video player decides the
bitrate or quality level of the segment, and the FoV may
vary across segments. Meanwhile, the actual capacity for
downloading a segment is unknown beforehand, and it may
fluctuate significantly across time due to user mobility and
handoff. To address the unknown and varying user’s FoV
and downloading capacity, existing works have proposed
bitrate selection algorithms1 for VA360 video streaming.

1.2 Related Work
The existing works on bitrate selection algorithms for VA360
video streaming can be classified into three types. The
first type is head movement based algorithm, which selects
the quality levels of tiles based on the user’s short-term
historical head movement. Qian et al. in [5] proposed an
algorithm that predicts a user’s FoV based on the user’s
head movement using linear and ridge regression. Zhang
et al. in [6] proposed a deep reinforcement learning (DRL)
algorithm to learn the optimal bitrate selection according to
the predicted FoV and bandwidth. Pang et al. in [7] proposed
a DRL algorithm according to the short-term historical head
movement and bandwidth. He et al. in [8] proposed a bitrate
selection algorithm for smartphones based on user’s real-
time head movement. Nguyen et al. in [9] proposed an
algorithm that takes into account user’s head movement
and FoV estimation error. In [10], Sun et al. proposed a two-
tier system taking into account both user’s head movement
and buffer occupancy. The second type is content based
algorithm, which selects the quality levels based on saliency
and motion maps. Borji et al. in [11] presented a survey of
saliency detection methods. Shen et al. in [12] proposed a
Lyapunov-based algorithm based on the detected saliency.
Jiang et al. in [13] proposed a two-layer bitrate selection
algorithm based on saliency and motion maps as well as
buffer management. The third type is fixation clustering
based algorithm, which optimizes the quality levels based
on the historical fixation or FoVs of other users. In [14],
Yuan et al. proposed to predict a user’s FoV using a Gaus-
sian model based on the user’s real-time FoV. Xie et al.
in [15] proposed an algorithm to maximize a user’s video
quality by identifying the user’s class through comparing
the historical FoVs of the user and other users in different
classes. Xiao et al. in [16] proposed an algorithm based on
the probability that each tile is being viewed by other users.
Meanwhile, some works have considered combinations of
the three types. Nguyen et al. in [17] and Fan et al. in [18]
considered both head movement and saliency detection.
Guan et al. in [19] considered both saliency detection and
the historical FoV of other users.

1. Selecting the quality levels of the tiles is essentially selecting the
bitrates of them, as the tiles encoded at different quality levels have
different bitrates. In this work, we will use ‘bitrate selection’ and
‘quality level selection’ interchangeably if no confusion arises.

Despite the success of those algorithms, there is still
potential for further improving the user’s QoE by taking
into account the personalized FoV. Specifically, there may
be difference between a user’s actual FoV and the predicted
FoV. For those head movement based algorithms, such a
difference may result from the user-specific head movement
habits and the inaccuracy of the prediction algorithms. For
those content based algorithms and fixation clustering based
algorithms, such a difference may result from the user-
specific viewing interests and preference.

In this work, we aim to propose an online bitrate selec-
tion algorithm that can optimize the user’s QoE by learning
the user’s personalized FoV and real-time downloading
capacity.

1.3 Solution Approach and Contributions
In this work, we propose an online bitrate selection algo-
rithm, called OBS algorithm, for VA360 video streaming.
This algorithm can learn the user’s personalized FoV and
real-time downloading capacity in an online fashion.

The idea of the OBS algorithm is inspired by the ex-
isting online gradient descent (OGD) algorithms [20]–[22],
which can learn the users’ features in an online fashion.
The existing OGD algorithms, however, cannot be directly
used in the VA360 video streaming model. The first reason
is that those algorithms are only applicable to continuous
decision variables, whereas the quality levels of the tiles are
discrete in VA360 video streaming. The second reason is that
in those algorithms, when the decision of an object (e.g., a
segment in our work) is to be made, the realization of the
parameters related to the previous object needs to be known.
This requirement, however, may not always hold in VA360
video streaming. In comparison, our proposed algorithm
can handle the discrete quality levels and the scenario where
the video player may not have observed the realization of
the parameters of the previous segment when it needs to
make the bitrate decision of a segment.

The main contributions of this work are as follows.

• Viewport-Adaptive 360-Degree Video Streaming: We for-
mulate a bitrate selection problem to maximize the
user’s QoE. It can characterize the user’s personal-
ized FoV and real-time downloading capacity.

• Online Bitrate Selection Algorithm: We propose an OBS
algorithm for online bitrate selection. We prove that
as the number of segments increases, the perfor-
mance gap between the proposed algorithm and
the offline optimal solution (where the user’s FoV
and downloading capacity are known beforehand) is
bounded on the long-term average.

• Performance Evaluation: We perform trace-driven sim-
ulations with datasets from [23]–[25]. Simulation re-
sults show that our proposed algorithm can enhance
the user’s viewing quality level as well as reduce
the inter-segment and intra-segment quality switch
when compared with several existing methods.

The rest of this paper is organized as follows. We present
the system model in Section 2. In Section 3, we propose the
online bitrate selection algorithm. In Section 4, we show the
performance evaluation. We conclude in Section 5.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

3

2 SYSTEM MODEL

In this section, we first introduce the model setting, and then
formulate the user’s QoE maximization problem.

2.1 Model Setting
We focus on the bitrate selection of a user’s 360-degree video
streaming. The video and user models are as follows.

2.1.1 Video Model

The video is temporally partitioned into segments (i.e., small
video pieces), each corresponding to a playback time of
� seconds. Let I = {1, 2, . . . , I} denote the set of seg-
ments. Each segment is further spatially divided into K
tiles with M rows and N columns, i.e., K = MN . Let
K = {1, 2, . . . ,K} denote the set of tiles of each segment.

For each segment, we regard the predicted FoV of the
user (based on the existing head movement, content, or
fixation clustering based prediction algorithms) as a reference
FoV. Hence, the user-specific FoV feature can be charac-
terized based on the relative position and relative area of
the user’s actual FoV to the reference FoV. Fig. 3 shows
an example of a 360-degree video streaming of car riding
experience. During the playback time of a segment, the
reference FoV may focus on looking ahead in the car (e.g.,
the four shaded tiles in the center), while the user’s actual
FoV may look towards the right-hand side of car (e.g., the
solid rectangle). Moreover, the user may change his or her
focus during the playback time of the segment, so the area
covered by the user’s actual FoV during the playback time
may be different from that of the reference FoV.

The reference FoV can be different in different segments.
Hence, in order to characterize the difference between the
user’s actual FoV and the reference FoV, we define the
indices of the tiles based on their relative positions to the
reference FoV.2 The indices of the tiles are defined as follows.
Suppose the top-left corner of the reference FoV is at the tile
on row m0 and column n0. The tile on row m and column n
is indexed with Nmod(m�m0,M)+(mod(n�n0, N)+1),
where mod(x, y) is equal to x modulo y, and M and N is the
total number of rows and columns of the tiles, respectively.
For example, in Fig. 4, the reference FoV is represented
by the shaded area, which can be different for different
segments. In segment 1, the top-left corner of the reference
FoV is located at the tile on row m0 = 2 and column n0 = 3,
so the tile on row m = 2 and column n = 6 is indexed by
6mod(2 � 2, 4) + (mod(6 � 3, 6) + 1) = 4. Note that the
360-degree video has no boundary, e.g., in segment 1, tile 5
is adjacent to the right-hand side of tile 4.

In the following, we use tile (i, k) to denote tile k of
segment i. Each tile (i, k) is encoded at Q quality levels,
i.e., Q = {1, 2, . . . , Q}, with quality level 1 corresponds
to the lowest quality. In practice, different quality levels
correspond to different constant rate factors [26] when a
tile is being encoded [5, Section 9.1]. Suppose tile (i, k)

2. This is related to only tile indexing and does not affect the encoding
or video streaming process. In practical systems, the indices of the tiles
used in the video server may be different from the indices defined in
this paper. In this case, when the video player requests a tile, it can
first compute the index of the tile used in the server and then send the
corresponding request.

Fig. 3: An example with a 360-degree car riding video.

Temporal division

1 2 3 4 5

Spatial division

Segment 1 Segment 2

11 12

13 14 15 16

1 2 3 45 6

7 8 9 10

17 18

19 20 21 2223 24

1 2 34 5 6

7 8 910 11 12

13 14 1516 17 18

19 20 2122 23 24

Time

Fig. 4: An illustration of the reference tiles and tile indices.

is encoded at quality level q 2 Q. Let ri,k(q) (in Mbps)
denote the bitrate of the tile, which is increasing in q. That
is, a higher quality level q will lead to a higher bitrate
ri,k(q). Note that under the same quality level q, different
tiles may have different bitrates ri,k(q) due to the different
features (e.g., motion) of their contents. The value of the
bitrate represents the number of bits required to encode a
tile corresponding to a playback time period of one second.
Hence, if tile (i, k) corresponds to a playback time of �
seconds and is encoded at quality q 2 Q, then the size of
the tile is ri,k(q)� Mbits.

2.1.2 User Model

During video streaming, the user’s downloading capacity
and his or her FoV are time-varying. The user’s download-
ing capacity varies across time. We consider a continuous
time interval T = [0, T). Let d(t) denote the user’s down-
loading capacity at time t 2 T , i.e., the user’s maximum
achievable downloading rate at time t. We assume that d(t)
is upper- and lower-bounded, i.e., d(t) 2 [dmin, dmax] for
all t 2 T . On the other hand, the user’s FoV varies across
playback time (instead of the real time),3 because the user
changes the FoV to watch his or her interested contents in
the video, which is playback time-associated. Let !i,k denote
the fraction of tile (i, k) that is overlapped with the user’s
FoV, which is averaged across the playback time of segment
i. Let (!i,k) denote whether tile (i, k) is being viewed by
the user or not, where (!i,k) = 1 if !i,k > 0 and is equal
to zero otherwise. Due to the tile indexing considered in
this work, the values of (!i,k) for k 2 K can imply how
the user’s actual FoV of segment i is different from the
predicted one. For example, in Fig. 4, if (!i,k) = 1 for tiles
k = {1, 2, 3, 7, 8, 9}, then the actual user’s FoV of segment i
covers not only the reference FoV (i.e., the predicted FoV of
the user) but also the right-hand side of it.

2.2 Problem Formulation
In the following, we first introduce the decision variables.
We then describe the constraints and the QoE. Finally, we

3. For example, a user starts playing the video at time t = 0 sec,
and the video rebuffers for one second during time interval [1, 2] (sec).
Then, at real time t = 3 sec, the playback time is at 3� (2� 1) = 2 sec.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

4

formulate the QoE maximization problem.

2.2.1 Decision Variables

The video player makes decisions on the quality levels of
the tiles, which affect the corresponding bitrates of the tiles.
Let qi,k 2 Q denote the quality level decision of tile (i, k).
Note that as the indices of the tiles are defined based on
their relative positions to the reference FoV, choosing the
quality level of a tile with a particular index is essentially
choosing the quality level of a tile covering a particular area
with reference to the reference FoV. For example, in Fig. 4, if
the video player chooses to download tiles 1 � 3 and 7 � 9
in high quality for both segments 1 and 2, then the tiles
covering the reference FoV and the right-hand side of it are
in high quality for both segments.

We assume that there is no segment replacement, and
each tile is downloaded once. Let ⌧i,k 2 T and ⌧̂i,k 2 T

denote the time that the downloading of tile (i, k) is started
and finished, respectively. The video player downloads the
video tiles in a particular sequence: tile (i, k) is downloaded
earlier than tile (i0, k0) if and only if either (a) i < i0 or (b)
i = i0 and k < k0. Without loss of generality, we set ⌧1,1 = 0
as the time when the downloading of the first tile of the first
segment begins. When one tile has been downloaded, the
downloading of the next tile will start immediately, i.e.,

⌧i,k =

8
<

:

⌧̂i,k�1, k > 1,
⌧̂i�1,K , k = 1, i 6= 1,
0, k = 1, i = 1.

(1)

Let bi denote the buffer occupancy when all the tiles
of segment i have been downloaded. We define the buffer
occupancy with respect to the segment index for the pre-
sentation simplicity of buffer update (i.e., the buffer is being
updated when a segment has been received). The buffer oc-
cupancy is in the unit of playback time, which is commonly
used in the existing works on dynamic adaptive streaming
over HTTP (DASH), e.g., [27]. Receiving one segment will
lead to a buffer occupancy increased by � seconds.

Without loss of generality, we set b0 = bINI as the initial
buffer occupancy. We define the following decision vectors:
q = (qi,k, i 2 I, k 2 K), qi = (qi,k, k 2 K), ⌧ = (⌧i,k, i 2
I, k 2 K), ⌧̂ = (⌧̂i,k, i 2 I, k 2 K), and b = (bi, i 2 I).

2.2.2 Downloading Capacity and Buffer Update Constraints

Within the downloading period of tile (i, k), the capacity
constraint ensures that the total size of the downloaded tile
should be no larger than the downloading capacity within
the downloading period, i.e.,

ri,k(qi,k)�

Z ⌧̂i,k

⌧i,k

d(t)dt, i 2 I, k 2 K. (2)

When all the tiles of segment i have been received, the
buffer is updated as follows:

bi = [bi�1 � (⌧̂i,K � ⌧i,1)]
+ + �, i 2 I, (3)

where the operator [x]+ = max{x, 0}. In (3), if the buffer
occupancy bi�1 is no smaller than the downloading period,
then buffer occupancy bi is the sum of the buffer occupancy
immediately before receiving segment i and the received
segment length �. If the buffer becomes empty before re-
ceiving segment i, then buffer occupancy bi is equal to �.

2.2.3 User’s QoE

Recall that the indicator function (!i,k) denotes whether
tile (i, k) is being viewed by the user or not. For the
definition of the user’s QoE, we define a function µi(qi)
for any segment decision vector qi, indicating the average
viewing quality when the user views segment i under the
quality level decision, i.e.,

µi(qi) =

P
k2K (!i,k) qi,kP

k2K (!i,k)
, i 2 I. (4)

Note that this is the average quality level that the user
actually views, considering the user’s actual FoV.

The user’s QoE consists of three terms, which are the
user’s gain due to its viewing quality G(q), the rebuffering
loss LRB(⌧ , ⌧̂ , b), and the quality switch loss LQS(q):4

U(q, ⌧ , ⌧̂ , b) = G(q)� LRB(⌧ , ⌧̂ , b)� LQS(q). (5)

The user’s gain of each segment is a function of the
user’s viewing quality of the segment, i.e., a higher viewing
quality leads to a higher gain. The user’s gain G(q) is the
summation of the user’s gains of all segments:

G(q) =
X

i2I
gi(µi(qi)), (6)

where gi(·) for segment i is a non-decreasing concave func-
tion. The concavity captures the fact that the user’s marginal
gain is non-increasing in the viewing quality.

Rebuffering happens when the video player has not
receive a segment at the time that the segment is going to be
played. The rebuffering loss is the user’s loss resulting from
the video freeze. This loss is proportional to the rebuffering
time. The rebuffering loss is defined as follows:

LRB(⌧ , ⌧̂ , b) = lRB
X

i2I
[⌧̂i,K � ⌧i,1 � bi�1]

+ , (7)

where lRB is the unit loss if the user experiences a one-
second rebuffering. In (7), if the duration between when
the downloading of segment i starts and when the tiles of
the segment have been downloaded is larger than the buffer
occupancy bi�1, then rebuffering will happen. This will lead
to a rebuffering time of [⌧̂i,K � ⌧i,1 � bi�1]

+ seconds.
The quality switch (i.e., quality improvement and degra-

dation) loss consists of two parts: an inter-segment quality
switch loss LQS-E(q) and an intra-segment quality switch
loss LQS-A(q). That is,

LQS(q) = LQS-E(q) + LQS-A(q). (8)

The inter-segment quality switch loss is the loss resulting
from the quality switch among segments, i.e.,

LQS-E(q) = lQS-E
X

i2I/{1}
|µi�1(qi�1)� µi(qi)| , (9)

where lQS-E is the loss if the viewing quality is switched by
one unit. In (9), if µi�1(qi�1) and µi(qi) are different, then

4. This work can be extended to the scenario with other formulations
of user’s QoE U(q, ⌧ , ⌧̂ , b), as long as U(q, ⌧ , ⌧̂ , b) is concave in q
given any ⌧ , ⌧̂ , b. To ensure that the algorithm proposed in this work is
applicable under the extended scenario, the per-segment QoE functions
(i.e., eUi(qi | qi�1, bi�1) for i 2 N) in Section 3.1.1 have to be modified
according to the specific formulation of U(q, ⌧ , ⌧̂ , b).

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

5

the inter-segment quality switch occurs, leading to a loss
which is proportional to the size of the quality switch. The
intra-segment quality switch loss is the loss resulting from
the variance of the quality levels of the tiles viewed by the
user. That is,

LQS-A(q) = lQS-A
X

i2I

P
k2K (!i,k) (µi(qi)� qi,k)

2

P
k2K (!i,k)

, (10)

where lQS-A is the loss per unit variance. In (10), if the vari-
ance of the quality levels of the tiles that are being viewed
by the user is nonzero, then the intra-segment quality switch
happens, inducing a loss proportional to the variance.

2.2.4 Problem Formulation

We aim to determine the decision vectors q, ⌧ , ⌧̂ , b to
maximize the user’s QoE subject to the capacity and buffer
update constraints. The problem is formulated as follows:

maximize
q,⌧ ,⌧̂ ,b

U(q, ⌧̂ , ⌧ , b) (11a)

subject to qi,k 2 Q, i 2 I, k 2 K, (11b)
0 ⌧i,k < T, i 2 I, k 2 K, (11c)
0 ⌧̂i,k < T, i 2 I, k 2 K, (11d)
bi � 0, i 2 I, (11e)
constraints (1), (2), (3).

Problem (11) is a mixed-integer nonconvex programming
problem with nonlinear constraints (2) and (3). This problem
is challenging to solve, even in an offline case when all the
parameters (i.e., the user’s FoV and downloading capacity)
are known beforehand. In this work, we focus on the online
algorithm design. This addresses the realistic scenario where
the user’s FoV of a segment and the capacity for download-
ing the segment are unknown when the video player makes
the quality level decision of the segment.

3 ONLINE ALGORITHM DESIGN

In this section, we focus on the online algorithm design.
For the design of the online algorithm, we consider a set
of per-segment problems, each corresponding to one of the
segments of the video. The main idea of the algorithm is
to make the quality level decision of a segment based on
the quality level decisions of a set of previous segments as
well as the per-segment problems of the previous segments,
taking into account the corresponding realization of the
real-time downloading capacity and user’s actual FoV. The
performance of the algorithm will be evaluated by dynamic
regret [20], [21], reflecting the regret of the algorithm in the
objective value. We show that as the number of segments
increases, the dynamic regret of the proposed algorithm is
bounded on the long-term average.

We first introduce the set of per-segment problems and
the performance metric. Then, we introduce the online al-
gorithm. After that, we show the performance guarantee of
the proposed algorithm under particular conditions. Finally,
we modify the online algorithm to address the scenario in
practice systems.

3.1 Per-Segment Problem
For the design of the online algorithm, we consider a set
of per-segment optimization problems. The per-segment
problem corresponding to segment i 2 I aims to optimize
the quality level decision of segment i at the time that the
decisions of all the previous segments have been made.

3.1.1 Per-Segment Objective Function

For segment i 2 I , we define a function eUi(qi | qi�1, bi�1) to
indicate the user’s QoE of segment i under decision vector
qi, given the quality decision of segment i�1 (i.e., qi�1) and
the buffer occupancy before downloading segment i (i.e.,
bi�1). The function eUi(qi | qi�1, bi�1) is given as follows:

eUi(qi | qi�1, bi�1)

= gi(µi(qi))� lRB

1

d̄i

X

k2K
ri,k(qi,k)� � bi�1

!

� lQS-E
|µi�1(qi�1)� µi(qi)|

� lQS-A

P
k2K (!i,k) (µi(qi)� qi,k)

2

P
k2K (!i,k)

, (12)

where d̄i is the average downloading capacity when seg-
ment i is being downloaded. For simplification, we will use
eUi(qi) to denote eUi(qi | qi�1, bi�1) in the rest of this paper.

In contrast to the user’s QoE for segment i (as in Section
2.2.3), equation (12) has two major differences. First, we
assume that the quality level decision of segment i does not
have a significant impact on the value of d̄i.5 As a result, we
can use

P
k2K ri,k(qi,k)�/d̄i to represent the downloading

time of segment i under any quality level choice qi,k for all
k 2 K [8], [13]. Second, in (12), we relax the operator [·]+

involved in the rebuffering loss. Intuitively, as we focus on
per-segment problems, this relaxation can help with charac-
terizing the impact of the quality level decision of a segment
on the user’s QoE of the subsequent segments. For example,
the rebuffering loss may fail to capture the difference be-
tween downloading a segment (with lower quality) for one
second and downloading a segment (with higher quality)
for five seconds, if neither downloading process induces
rebuffering. The two downloading processes, however, may
lead to different likelihood of having a rebuffering later
due to the resulting different buffer occupancy after the
downloading has been accomplished. This difference can be
characterized if the operator [·]+ is relaxed.

3.1.2 Per-Segment Optimization Problem

Given qi�1 and bi�1, the per-segment problem for segment
i is to determine the decision qi to maximize eUi(qi), i.e.,

maximize
qi

eUi(qi)

subject to qi,k 2 Q, k 2 K.
(OPT-SEGMENT-i)

Problem (OPT-SEGMENT-i) does not include constraints (1),
(2), and (3) (as in problem (11)) for the following reasons.

5. For example, consider a two-second 4K segment encoded at mul-
tiple quality levels, where the available bitrate range is 20 � 51 Mbps
[28]. Based on the downloading capacity traces from the dataset in
[23], the average downloading time of this segment has a range of
2.1 � 4.4 seconds. Downloading this segment at bitrates between 20
and 51 Mbps leads to an average downloading capacity difference of
10.3% on average.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

6

Temporal division

1 2 3 4 5

Spatial division

Segment 1 Segment 2

11 12

13 14 15 16

1 2 3 45 6

7 8 9 10

17 18

19 20 21 2223 24

1 2 34 5 6

7 8 910 11 12

13 14 1516 17 18

19 20 2122 23 24

Time

Segment 3

1 23 4 5 6

7 89 10 11 12

13 1415 16 17 18

19 2021 22 23 24

Fig. 5: An example of the user’s actual FoV and the reference FoV. Recall
that the 360-degree video has no boundary, e.g., for segment 3, tile 3 is
on the right-hand side of tile 2.

Constraint (1) is eliminated, because under the per-segment
problem, the relationship between the downloading time of
different segments does not need to be considered. Con-
straint (2) is eliminated, because we assume that d̄i is irrel-
evant to the quality level decision of segment i. Hence, the
downloading time of the segment can be approximated us-
ing

P
k2K ri,k�/d̄i and is accounted in the objective function

eUi(qi). In addition, with the set of per-segment problems, at
the time that the bitrate decision of segment i is optimized,
the buffer occupancy bi�1 is directly observed, so the buffer
update constraint (3) is not required.

3.2 Performance Metrics
We evaluate the performance of the online algorithm using
dynamic regret [20], [21]. The dynamic regret characterizes
the difference between the user’s QoE under the optimal
quality level decision (i.e., the decision after the realization
of the user’s FoV and downloading capacity) and the user’s
QoE under the actual quality level decision determined
by the proposed algorithm (i.e., the decision before the
realization of the user’s FoV and downloading capacity).
Specifically, let qo

i denote the quality decision of segment
i derived from the online algorithm. Let q⇤

i denote the
optimal quality decision of segment i obtained by solving
problem (OPT-SEGMENT-i) under the realization of the
user’s FoV and downloading capacity. The dynamic regret
is defined as follows:

RegI ,
X

i2I

⇣
eUi(q

⇤
i)� eUi(q

o
i)
⌘
. (13)

Intuitively, a smaller dynamic regret implies that the perfor-
mance of the online algorithm is closer to that of the offline
optimal performance where the user’s FoV and download-
ing capacity are known beforehand.

3.3 Online Bitrate Selection Algorithm
We design an online algorithm, called OBS algorithm. Intu-
itively, the algorithm aims at letting the video player choose
higher quality for those tiles that are more likely to be
viewed by the user, considering the difference between the
user’s actual FoV and the reference FoV. Fig. 5 shows an
example. Due to the tile indexing, the difference between the
user’s actual FoV (i.e., the solid rectangle) and the reference
FoV (i.e., the shaded area) can be represented using the
tile indices regardless of the reference FoV. As shown in
the figure, the user’s actual FoV always covers tiles 1 � 3,
6 � 9, 12, 19 � 21, 24 (i.e., the reference FoV as well as the
tiles above and beside the reference FoV), and it sometimes
covers tiles 5, 11, 13� 15, 17� 18, 23. Therefore, to enhance

the user’s QoE, the video player may choose high quality
for the former group of tiles, medium quality (if available)
for the latter ones, and low quality for the rest.

The main idea of the proposed algorithm is to update the
quality decision of a segment (with respect to the decisions
of the previous segments) that is likely to enhance the user’s
QoE based on the realization of the parameters (i.e., the real-
time downloading capacity and user’s actual FoV) related
to the previous segments. In the following, we first intro-
duce an auxiliary set for each segment, which indicates the
segments whose parameter realizations (e.g., capacity for
downloading the segment, FoV for viewing the segment) are
observed after the quality decision of the previous segment
is made. Then, we present our proposed OBS algorithm.

3.3.1 Auxiliary Set

Let Ĩi denote the segment index such that segment i has
been viewed by the user during the time period when the
quality decisions of segments Ĩi and Ĩi + 1 are made. Since
a segment should be downloaded before it is being viewed,
the FoV and downloading capacity information of segment
i has been observed by the video player when the decision
of segment Ĩi +1 is to be made. The auxiliary set Ii ⇢ I for
segment i 2 I [{I + 1} is defined as follows:

Ii , {i0 2 I | Ĩi0 = i� 1}, (14)

which is the set of segments which have been viewed by the
user during the time period when the quality level decisions
of segments i � 1 and i are made. The consideration of
i = I + 1 is used to include the segments whose parameter
realizations are observed after the quality level decision of
segment I is made.6 Note that those existing OGD algo-
rithms [20]–[22] can address only the scenario where set
Ii = {i � 1} for all i 2 I . That is, the information of
segment i�1 can always be observed during the time period
when the decisions of segments i � 1 and i are made. In
comparison, our proposed algorithm does not have such a
requirement, i.e., set Ii for each i 2 I can be empty or
contain the indices of any segments.

3.3.2 OBS Algorithm

The OBS algorithm is given in Algorithm 1. The algorithm
first initializes the following parameters: an initial quality
vector qo

0 , which can be any quality level in Q
K ; a parameter

↵ > 0, which corresponds to the positive stepsize in the
existing OGD algorithms [20]–[22].

For any segment i, the video player first obtains the
auxiliary set Ii, which contains the indices of the segments
whose FoV and downloading capacity information is newly
observed as defined in (14). Based on set Ii, the quality
decision of segment i is made as follows.

If the set Ii is non-empty, then the quality level decision
of segment i will be made based on the quality level deci-
sions of the segments referred in set Ii and the correspond-
ing downloading capacity and FoV information when each
of those segments is downloaded and viewed, respectively.
The determination of the quality level decision of segment i
contains two steps. (i) Find a quality decision (for each tile)

6. Given the quality level decisions and the parameter realizations of
all segments in set I, set II+1 and vector qo

I+1 can be determined.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

7

Algorithm 1 OBS Algorithm

1: Initialization: qo
0 and ↵;

2: for all i 2 I do
3: Obtain set Ii according to (14);
4: if Ii 6= ; then
5: Compute Ji according to (16);
6: Compute qc

i according to (15);
7: qo

i argminqi2QKkqi � qc
i k;

8: else
9: qo

i qo
i�1;

10: end if
11: end for

within continuous range conv(Q) = [1, Q], where conv(Q)
denotes the convex hull of Q. These quality level decisions
are the ones that are likely to enhance the user’s QoE
based on the decisions and parameter realizations of the
previous segments, under the assumption that any value
within conv(Q) can be selected. (ii) Map the quality level
decision (for each tile) derived based on the continuous set
conv(Q) to the discrete quality level set Q.

Step (i) (i.e., lines 5 and 6 in Algorithm 1) corresponds
to an online version of gradient descent. That is, it aims
to update the quality level decision of a segment (with
respect to the decisions of the previous segments) in the
direction where the user’s QoE increases fastest. Let qc

i 2

conv(Q)K = [1, Q]K denote the decision vector (containing
the quality level decisions of all K tiles) derived in step (i),
where the superscript ‘c’ refers to the ‘continuous range’.
The value of qc

i is derived as follows:

qc
i = arg min

qi2conv(Q)K
�r eUJi(q

c
Ji
)>(qi � qc

Ji
) +

1

2↵
kqi � qc

Ji
k
2,

(15)
where r eUJi(q

c
Ji
) is the subgradient of eUJi(q

c
Ji
), and Ji is

defined as

Ji , argmin
j2Ii

�r eUj(q
c
j)

>(qc⇤
j � qc

j), (16)

where qc⇤
j = argmaxqj2conv(Q)K

eUj(qj). Intuitively, Ji is
the index of the segment in set Ii such that the continuous
quality level decision of the segment is closest to the opti-
mal quality level decision (within continuous range) of the
segment and can lead to the fastest enhancement in terms of
the user’s QoE. In step (ii), the continuous quality decision
qc
i will be mapped to the discrete quality level set QK by

finding the quality level in set QK whose difference with qc
i

is the smallest. This is achieved by line 7 in Algorithm 1.
When set Ii is empty, no new information can be used

for characterizing the difference between the user’s actual
FoV and the reference FoV. Hence, the quality level decision
of segment i is set to be the quality level decision of segment
i� 1, i.e., line 9 in Algorithm 1.

In Algorithm 1, making the quality level decision of seg-
ment i 2 I requires a computational complexity of O(|Ii|).
In terms of the storage, the proposed algorithm requires the
video player to store the newly observed information. That
is, during the time period when the decisions of segments
i � 1 and i are made, the video player needs to store
the information related to the user’s downloading capacity
and the FoV associated with the segments in set Ii. The

downloading capacity d̄i is a real number, and the FoV in-
formation associated with segment i, i.e., (!i,k, k 2 K), is a
vector with K elements. Hence, such information consumes
only limited memory for storage.

3.4 Performance Analysis
We proceed to show the performance of Algorithm 1. In
the following, we first show some conditions regarding the
system setting. Then, we formally state the bound of the
dynamic regret of the proposed algorithm.

3.4.1 Conditions

In online convex optimization techniques considering time-
varying parameters, without restricting the varying of the
parameters, obtaining a bound on dynamic regret is not
possible [29]. Here, we impose the following conditions on
the varying of the parameters as follows.

Condition 1 (Empty Ii). There exists a nonnegative value V;
such that the number of the set Ii that satisfies Ii = ; for all
i 2 I [{I + 1} is bounded, i.e.,

X

i2I[{I+1}
(Ii = ;) V;, (17)

where (·) is an indicator function, i.e., (Ii = ;) = 1 if Ii = ;,
and is equal to zero otherwise.

In Condition 1, inequality (17) implies that the number
of the quality decisions that are not updated based on (15) is
bounded. To define the second condition, let J†

i denote the
index of the segment such that the quality level of segment
Ji is made based on it, i.e., J†

i = Ji0 with i0 = Ji.

Condition 2 (Time-Varying Parameters). There exists a non-
negative value Vq such that the following inequalities hold for any
number of segments I :

X

i2I[{I+1}
|Ii|kq

c⇤
Ji

� qc⇤
J†
i
k Vq, (18)

where |Ii| is the cardinality of set Ii.

Recall that qc⇤
i = argmaxqi2conv(Q)K

eUi(qi). In Con-
dition 2, inequality (18) ensures that the variations of
the parameters are relatively small, such that the changes
among the optimal solutions to the per-segment problems
are bounded. For example, this condition holds when the
downloading capacity remains relatively stable, or it holds
when the user sets a high priority on avoiding quality
switch.

3.4.2 Dynamic Regret

We show that the dynamic regret is upper-bounded. The
corresponding proof is given in the Appendix.

Theorem 1. Under Condition 1, the dynamic regret of Algorithm
1 is upper-bounded by

RegI
R2 (1 + V;)

2↵
+

RVq

↵
+

↵U
2
I

2

+ (eI 6= ;)
KQ

dmin

✓
3R2

2↵
+

↵

2
U

2
◆
+ IB. (19)

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

8

The constant U is the bound of the norm of the subgradient
r eUi(ri), i.e., kr eUi(ri)k U for all i 2 I and qi 2 Q

K .
The constant R is the radius of the convex hull conv(Q)K , i.e.,
kqi�q0

ik R, for all qi, q0
i 2 conv(Q)K . The set eI is a subset of

set I , which is defined as eI , {j 2 I | j /2 Ii, i 2 I [{I+1}}.
The constant B is the bound of the change of the user’s QoE
resulting from the mapping in line 7 in Algorithm 1. That is,
| eUi(qi) � eUi(q0

i)| B for qi, q0
i 2 Q

K and i 2 I , where qi,k
and q0i,k are adjacent quality levels from set Q for all k 2 K.

Based on Theorem 1, the dynamic regret on the long-
term average is bounded as follows.

Corollary 1 (Dynamic Regret). Under Conditions 1 and 2,
by setting ↵ = ↵0I�1/� for any � 2 (1,1), the dy-
namic regret of Algorithm 1 on the long-term average satisfies
limI!1 RegI/I B.

The proof of Corollary 1 is provided in Appendix B.
Corollary 1 implies that as the number of segments in-
creases, the performance of the proposed online algorithm
approaches the performance under the optimal solutions
to the per-segment problems (OPT-SEGMENT-i) for i 2 I

asymptotically, with a bounded error B. The bounded error
B is due to the fact that the quality level set is discrete
such that decreasing the quality level of a tile by one unit
leads to a noncontinuous drop in terms of the user’s QoE. In
other words, if the quality level set Q is large such that the
adjacent quality levels in the set do not lead to remarkable
changes in the user’s QoE (i.e., B is around zero), then
the difference between the performance of the proposed
algorithm and the optimal performance approaches zero.

3.5 Algorithm Modification

Theorem 1 and Corollary 1 show the performance of Algo-
rithm 1 on the long-term average. That is, as the number of
segments increases, the performance of the proposed algo-
rithm gradually approaches the offline optimal performance
with a bounded error. When the number of segments that
have been played back is small, the proposed algorithm may
still be in the learning phase and may not have approached
the offline optimal performance. In this case, there may exist
unnecessary rebuffering and quality switch. To address this
issue, for any quality level decision output of the algorithm
(i.e., qo

i), we compute a modified quality level decision qm
i

to reduce the rebuffering and quality switch experienced by
the user. Note that qm

i is the actual quality level decision
used for scheduling the video tiles. It does not affect the
operation of Algorithm 1. Hence, Theorem 1 and Corollary 1
on dynamic regret, i.e., RegI ,Pi2I(

eUi(q⇤
i)� eUi(qo

i)), still
hold. When the number of segments that have been played
back is large enough such that qo

i converges to a particular
quality level decision vector, the modification makes no
difference in the quality level decision. In this case, we have
qm
i = qo

i .
We compute qm

i using a heuristic idea as follows. We
first define a vector q̃o

i 2 Q
K , which is computed as q̃oi,k =

max{min{qoi,k, q
m
i�1,k + 1}, qmi�1,k � 1}. This means that q̃oi,k

is at most one level higher than the previous quality level
qmi�1,k, and it is at most one level lower than the previous
quality level. Intuitively, this can reduce the chance of inter-

1-B 1-C 1-F 1-T 2-B 2-C 2-F 2-T
0

50

100

D
ow

nl
oa

di
ng

 C
ap

ac
ity

 (M
bp

s)

Fig. 6: Downloading capacity of the traces in datasets. In the x-axis,
numbers 1 and 2 refer to the datasets in [23] and [24], respectively.
Letters ’B’, ’C’, ’F’, and ’T’ refer to bus, car, foot, and train, respectively.

TABLE 1: Description of the Videos

Video Resolution Dur. Video Resolution Dur.
360pa. 3840⇥1080 377 s luther 2880⇥1440 265 s
cin. 2560⇥1280 60 s smart 4096⇥2048 127 s
DB 4096⇥1024 238 s vaude 4096⇥2048 145 s
jaunt 2304⇥1152 172 s war 4096⇥1152 205 s

segment quality switch in the future. Then, we compute qm
i

as the optimal solution to the following problem:

minimize
qm
i ,z

kqm
i � eqo

i k (20a)

subject to qmi,k =
X

q2Q
zk,qq, k 2 K (20b)

X

k2K
ri,k(q

m
i,k)�/d̄i�1 bi�1, (20c)

X

q2Q
(
X

k2K
zk,q) ⇣, (20d)

qmi,k 2 Q, k 2 K, (20e)
zk,q 2 {0, 1}, k 2 K, q 2 Q. (20f)

In problem (20), we introduce an auxiliary variable z =
(zk,q, k 2 K, q 2 Q). For this auxiliary variable, zk,q = 1
indicates that the kth tile is at quality level q; zk,q = 0
otherwise. Hence, we have qmi,k =

P
q2Q zk,qq for k 2 K,

i.e., constraint (20b). Intuitively, problem (20) aims to find
a quality level decision qm

i that is close to eqo
i . The quality

level decision qm
i should have a low chance of rebuffering

(constraint (20c)) and a low chance of intra-segment quality
switch. The latter is captured by constraint (20d), i.e., the
total number of non-identical quality levels of the tiles
should be less than ⇣ . We empirically find that ⇣ = 3 leads
to a good performance.

4 PERFORMANCE EVALUATION

In this section, we perform trace-driven simulations to eval-
uate the performance of our proposed OBS360 algorithm.
We use three open datasets from [23]–[25] to simulate the
360 degree video streaming scenarios. In our simulations,
each segment is divided into 24 tiles in a four by six grid.
Each user can see 110 degree in horizontal direction and
90 degree in vertical direction, as in [8], [14]. We consider
a setting where the videos are encoded and projected using
equirectangular projection, as in [5], [16]. We set the initial
buffer occupancy bINI to two seconds and segment length
� to one second. The simulation results are shown using
boxplot [30]. Specifically, for each box, the central red mark
shows the median, and the bottom and top edges indicate
the 25th and 75th percentiles, respectively. The lower and
upper bounds of the whiskers show the minimum and

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

9

360pa. cin. DB jaunt luther smart vaude war
0
2
4
6

Bi
tra

te
 (M

bp
s)

Fig. 7: Available bitrate ranges of different videos, where the x-axis
corresponds to the title abbreviations of the videos.

maximum without considering the outliers, respectively.
The red ’+’ marks show the outliers.

In the following, we first introduce the open datasets
from [23]–[25]. Then, we present the simulation results.

4.1 Datasets

We use the datasets from [23] and [24] to simulate the
users’ downloading capacities. The dataset in [23] contains
40 bandwidth measurement traces in 4G networks in the city
of Ghent, Belgium. The dataset in [24] contains 135 traces
in 4G networks from Irish mobile operators. Both datasets
are collected on various transportation modes, such as by
bus, car, train, or on foot. We choose these two datasets
because the data are collected in 4G networks and contain
traces with different average downloading capacities. Fig. 6
shows the boxplot of the downloading capacity samples of
the datasets in [23] and [24] under different transportation
modes. In Fig. 6, the traces in the dataset from [23] (cor-
responding to boxes 1-B, 1-C, 1-F, and 1-T) have a higher
average downloading capacity than the traces in the dataset
from [24] (corresponding to boxes 2-B, 2-C, 2-F, and 2-T).

We use the dataset in [25] to simulate the user’s FoV. This
dataset contains the traces of eight videos. The video infor-
mation is provided in Table 1, where ‘dur.’ is the short-form
for ‘duration’. An advantage of this dataset is that it contains
the recommended viewing traces of the videos, which are
marked by professional filmmakers. Consequently, we can
compare the performance of our proposed algorithm with
that of directly optimizing the quality levels based on the
recommended viewing traces. For each video, there is one
recommended viewing trace and 20 actual viewing traces
from 20 users. In the dataset, either the recommended trace
or each user’s trace of watching a video is represented by a
viewing degree trace ((p1, y1), (p2, y2), . . . , (pI , yI)), where
pi 2 [�90�, 90�] and yi 2 [�180�, 180�] are the pitch (verti-
cal degree) and yaw (horizontal degree) of the correspond-
ing viewport of segment i = 1, 2, . . . , I , respectively. To
perform trace-driven simulations, we use FFmpeg [31] to en-
code each video into eight quality levels Q = {1, 2, . . . , 8}.
We choose the value of the constant rate factor from set
{6, 12, 18, 23, 28, 33, 38, 43}. Note that a lower quality level
corresponds to a higher constant rate factor. The videos
encoded at consecutive quality levels have a bitrate ratio of
1:1.7 on average. We use FFmpeg to divide the video at each
quality level into segments with a duration of one second.
We further divide each segment into 4⇥ 6 = 24 tiles. Fig. 7
shows the available bitrate ranges of the videos encoded at
different quality levels. As shown in the figure, the bitrates
of videos ‘360pa.’, ‘jaunt’, and ‘war’ are relatively low, while
those of videos ‘luther’, ‘smart’, and ‘vaude’ are relatively
high.

4.2 OBS360 and Benchmark Methods
We consider the following performance metrics: viewing
quality level, rebuffering, as well as inter-segment and intra-
segment quality switch. We evaluate the performance of the
following algorithms. (i) ‘DC’, which is a greedy algorithm
that optimizes the quality level based on the recommended
FoV (or director’s cut) provided by the dataset in [25].
(ii) ‘BAS360’ in [16], which aims to minimize the band-
width waste, i.e., the bandwidth that can be further utilized
without inducing rebuffering and the bandwidth used for
downloading the unviewed tiles. This bandwidth waste is
minimized according to the user’s predicted FoV derived
based on the historical FoV of other users. (iii) ‘Flare’ in [5],
which aims to maximize the user’s QoE according to the
predicted FoV derived based on the user’s head movement.
(iv) ‘OBS‘, which is our proposed algorithm. For the pro-
posed ‘OBS’ algorithm, the reference FoV can be the recom-
mended FoV provided by [25], the predicted FoV based on
the historical FoV of other users [16], and the predicted FoV
based on the user’s head movement [5]. The corresponding
algorithms with the reference FoVs are denoted by ‘OBS-R’,
‘OBS-H’, and ‘OBS-M’, respectively. Note that we choose
‘DC’, ‘BAS360’, and ‘Flare’ for comparison, because they
correspond to content based, fixation clustering based, and
head movement based algorithms, respectively.

In these simulations, we assume that all the tiles are
downloaded in the sequence of their indices (as we have
assumed in Section 2.2.1) for all algorithms. We leave the
optimization of the downloading sequence of the tiles as
future work. For each simulation, we consider 20 users,
because the dataset in [25] contains the FoV traces collected
from a total of 20 participants. Each user corresponds to a
FoV trace from the dataset in [25] and a randomly selected
downloading capacity trace from the datasets in [23], [24].
We set parameters lRB = 1, lQS-E = 0.5, and lQS-A = 0.5, as in
other existing works such as [8], [32]. Furthermore, accord-
ing to [8], we consider a fixed decoding time of 0.6 second
for each segment, which is assumed to be independent of
the bitrates of the tiles of the segment.7

4.2.1 Impact of Reference FoV

In this section, we evaluate the performance of the exist-
ing methods (‘DC’, ‘BAS360’, and ‘Flare’) as well as our
proposed algorithm under different reference FoVs (‘OBS-
R’, ‘OBS-H’, and ‘OBS-M’). Note that these methods can be
grouped into pairs. That is, ‘DC’ and ‘OBS-R’ are based on
recommended FoV, ‘BAS360’ and ‘OBS-H’ are based on the
predicted FoV according to the historical FoV of other users,
and ‘Flare’ and ‘OBS-M’ are based on the predicted FoV
according to the user’s head movement.

From Figs. 8 and 9, we have the following observations.
First, for each pair of methods, our proposed algorithm
can improve the viewing quality level as well as reduce
the inter-segment and intra-segment quality switch when
comparing with the other method in the pair. Such per-
formance enhancement is more significant for the pair of
methods ‘DC’ and ‘OBS-R’ when compared with other pairs.
This is because the recommended FoV is more different

7. As mentioned in [8], the decoding complexity is not significantly
affected by the bitrate of the segment.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

10

DC OBS-R BAS360 OBS-H Flare OBS-M
0
2
4
6
8

Vi
ew

in
g

Q
ua

lit
y

Le
ve

l Recomm. FoV Historical FoV Head Movement

(a)

DC OBS-R BAS360 OBS-H Flare OBS-M
0

0.05

0.1

R
eb

uf
. p

er
 S

eg
.

(in
 S

ec
on

ds
) Recomm. FoV Historical FoV Head Movement

(b)

DC OBS-R BAS360 OBS-H Flare OBS-M
0

1

2

In
te

r-S
eg

. S
w

itc
h

pe
r S

eg
. Recomm. FoV Head MovementHistorical FoV

(c)

DC OBS-R BAS360 OBS-H Flare OBS-M
0

1

2

In
tra

-S
eg

. S
w

itc
h

pe
r S

eg
. Recomm. FoV Head MovementHistorical FoV

(d)

Fig. 8: Performance under different reference FoVs (with the dataset in
[23]): (a) viewing quality level; (b) rebuffering; (c) inter-segment quality
switch; (d) intra-segment quality switch.

from the user’s actual FoV than the other predicted FoVs
are. Due to this, method ‘DC’ based on the recommended
FoV provides more potential for the proposed algorithm to
characterize the difference between the reference FoV (i.e.,
the recommended FoV for ‘OBS-R’) and the user’s actual
FoV. Hence, it provides more potential for the proposed al-
gorithm to enhance the system performance. Second, ‘OBS-
R’, ’OBS-H’, and‘OBS-M’ achieve similar performance in
terms of the viewing quality level, rebuffering, as well as
intra-segment quality switch, as shown in Figs. 8 and 9.
This implies that the choice of the reference FoV does not
have significant impact on the performance of the proposed
algorithm. In other words, as long as the reference FoV
is properly selected such that we can observe a particular
pattern in terms of the difference between the reference
FoV and the user’s actual FoV,8 the proposed algorithm can
achieve a good performance by selecting the quality levels
of the tiles according to the difference.

4.2.2 Impact of Video

In this section, we evaluate the performance of the algo-
rithms under different videos. As shown in Fig. 7, different
videos have different available bitrate ranges. Based on the
bitrate ranges, we classify the videos into three groups:

8. Recommended FoV and predicted FoV are good examples of ref-
erence FoV, while a randomly generated FoV may not. This is because
the difference between the randomly generated FoV and the user’s
actual FoV can be random, under which the random difference may
not provide any intuition on how to improve the system performance.

DC OBS-R BAS360 OBS-H Flare OBS-M
0
2
4
6
8

Vi
ew

in
g

Q
ua

lit
y

Le
ve

l Recomm. FoV Historical FoV Head Movement

(a)

DC OBS-R BAS360 OBS-H Flare OBS-M
0

0.05

0.1

R
eb

uf
. p

er
 S

eg
.

(in
 S

ec
on

ds
) Recomm. FoV Historical FoV Head Movement

(b)

DC OBS-R BAS360 OBS-H Flare OBS-M
0

1

2

In
te

r-S
eg

. S
w

itc
h

pe
r S

eg
. Recomm. FoV Head MovementHistorical FoV

(c)

DC OBS-R BAS360 OBS-H Flare OBS-M
0

1

2

In
tra

-S
eg

. S
w

itc
h

pe
r S

eg
.

Recomm. FoV Head MovementHistorical FoV

(d)

Fig. 9: Performance under different reference FoVs (with the dataset in
[24]): (a) viewing quality level; (b) rebuffering; (c) inter-segment quality
switch; (d) intra-segment quality switch.

{360pa., jaunt, war}, {cin., DB}, {luther, smart, vaude}.
The available bitrates of the videos in the first group are
relatively low, and those in the third group are high.

Figs. 10 and 11 show the algorithm performance under
different videos with the datasets in [23] and [24], respec-
tively. Note that we omit the performance of ‘OBS-R’ and
‘OBS-H’ for presentation simplicity. From Fig. 10, we have
the following observations. For videos in {360pa., jaunt,
war} and {cin., DB}, both ‘Flare’ and ‘OBS-M’ can achieve
the maximum viewing quality level (i.e., level 8) and have
low rebuffering and quality switch. This is because the
downloading capacity obtained from the dataset in [23] is
sufficient for downloading most of the tiles at the maximum
quality level. For videos in {luther, smart, vaude}, these
videos require higher bitrates to achieve each particular
quality level than the other videos do. Hence, it is more
challenging to provide video streaming services with high
viewing quality level as well as low rebuferring and quality
switch. For these videos in {luther, smart, vaude}, the
proposed algorithm ‘OBS-M’ improves the viewing quality
level by 3.0%� 21.6% as well as reduces the average intra-
segment switch by at least 21.5% when compared with the
other methods. The proposed algorithm ‘OBS-M’ achieves
similar intra-segment quality switch as ‘Flare’.

In Fig. 11, as the average downloading capacity of the
traces from the dataset in [24] is low than that from the
dataset in [23], the viewing quality levels of all the methods
in Fig. 11 (a) are lower than those in Fig. 10 (a). Mean-
while, the rebuffering of all the methods in Fig. 11 (b) are

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

11

{360pa., jaunt, war} {cin., DB} {luther, smart, vaude}
0
2
4
6
8

Vi
ew

in
g

Q
ua

lit
y

Le
ve

l DC BAS360 Flare OBS-M

(a)

{360pa., jaunt, war} {cin., DB} {luther, smart, vaude}
0

0.05

0.1

R
eb

uf
. p

er
 S

eg
.

(in
 S

ec
on

ds
) DC BAS360 Flare OBS-M

(b)

{360pa., jaunt, war} {cin., DB} {luther, smart, vaude}
0

1

2

In
te

r-S
eg

. S
w

itc
h

pe
r S

eg
. DC BAS360 Flare OBS-M

(c)

{360pa., jaunt, war} {cin., DB} {luther, smart, vaude}
0

1

2

In
tra

-S
eg

. S
w

itc
h

pe
r S

eg
. DC BAS360 Flare OBS-M

(d)

Fig. 10: Performance under different videos (with the dataset in [23]): (a)
viewing quality level; (b) rebuffering; (c) inter-segment quality switch;
(d) intra-segment quality switch.

higher than those in Fig. 10 (b). For these videos in {luther,
smart, vaude}, the proposed algorithm ‘OBS-M’ improves
the viewing quality level by 4.2%�29.4% as well as reduces
the average intra-segment quality switch by at least 12.4%
when compared with the other methods.

5 CONCLUSION

In this paper, we proposed an online bitrate selection
algorithm that can enhance the user’s QoE by learning
the user heterogeneity in terms of the user-specific FoV
and downloading capacity in real time. We proved that
as the number of segments increases, the performance of
the algorithm approaches the offline optimal performance
asymptotically with a bounded error. We performed trace-
driven simulations with real-world datasets on the user’s
FoV and downloading capacities. The results show that our
proposed algorithm can enhance the user’s viewing quality
level as well as reduce the inter-segment and intra-segment
quality switch when compared with the existing methods.

The results in this paper can be extended in the following
directions. First, it is interesting to take into account the
optimization of the downloading and decoding sequence
of the tiles, e.g., downloading and decoding the tiles which
have higher probability of being viewed earlier than those
with lower probability. This may further reduce the chance
of rebuffering, as the users care about only whether those
tiles being viewed are downloaded and decoded on time
or not. Second, it is interesting to incorporate segment re-
placement, i.e., replacing the low bitrate tiles in user’s buffer

{360pa., jaunt, war} {cin., DB} {luther, smart, vaude}
0
2
4
6
8

Vi
ew

in
g

Q
ua

lit
y

Le
ve

l DC BAS360 Flare OBS-M

(a)

{360pa., jaunt, war} {cin., DB} {luther, smart, vaude}
0

0.05

0.1

R
eb

uf
. p

er
 S

eg
.

(in
 S

ec
on

ds
) DC BAS360 Flare OBS-M

(b)

{360pa., jaunt, war} {cin., DB} {luther, smart, vaude}
0

1

2

In
te

r-S
eg

. S
w

itc
h

pe
r S

eg
. DC BAS360 Flare OBS-M

(c)

{360pa., jaunt, war} {cin., DB} {luther, smart, vaude}
0

1

2

In
tra

-S
eg

. S
w

itc
h

pe
r S

eg
. DC BAS360 Flare OBS-M

(d)

Fig. 11: Performance under different videos (with the dataset in [24]): (a)
viewing quality level; (b) rebuffering; (c) inter-segment quality switch;
(d) intra-segment quality switch.

with high bitrate ones whenever the bandwidth allows. For
example, if the bandwidth increases significantly during the
downloading of the tiles of a segment, the video player
may choose to download some of the tiles again in higher
bitrates to potentially improve the viewing quality of the
user. Third, it will be helpful to evaluate the performance
of the proposed algorithm using a testbed to understand
the performance under various videos, users, and network
connection settings. With the testbed, many practical issues
such as synchronization and rendering are needed to be
addressed. Fourth, based on the testbed, it is interesting to
evaluate the performance of the proposed algorithm with
human participants. Such an evaluation may be able to
characterize some aspects that are difficult to be captured
by trace-driven simulations. For example, humans may
have different sensitivity to the quality switch happening
at different playback time.

REFERENCES

[1] “Sony PlayStation VR,” https://www.playstation.com/en-au/
explore/playstation-vr/, Accessed on Oct. 29, 2020.

[2] M. Hosseini and V. Swaminathan, “Adaptive 360 VR video stream-
ing: Divide and conquer,” in Proc. IEEE Int’l Symp. on Multimedia
(ISM), San Jose, CA, Dec. 2016.

[3] L. D’Acunto, J. van den Berg, E. Thomas, and O. Niamut, “Using
MPEG DASH SRD for zoomable and navigable video,” in Proc.
ACM Int’l Conf. on Multimedia Systems (MMSys), Klagenfurt, Aus-
tria, May 2016.

[4] T. Ballard, C. Griwodz, R. Steinmetz, and A. Rizk, “RATS: Adap-
tive 360-degree live streaming,” in Proc. ACM Int’l Conf. on Multi-
media Systems (MMSys), Amherst, MA, Jun. 2019.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038710, IEEE
Transactions on Mobile Computing

12

[5] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Prac-
tical viewport-adaptive 360-degree video streaming for mobile
devices,” in Proc. ACM MobiCom, New Delhi, India, Oct. 2018.

[6] Y. Zhang, P. Zhao, K. Bian, Y. Liu, L. Song, and X. Li, “DRL360:
360-degree video streaming with deep reinforcement learning,” in
Proc. IEEE INFOCOM, Paris, France, Apr. 2019.

[7] H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun, “Towards low
latency multi-viewpoint 360� interactive video: A multimodal
deep reinforcement learning approach,” in Proc. IEEE INFOCOM,
Paris, France, Apr. 2019.

[8] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han, “Rubiks:
Practical 360-degree streaming for smartphones,” in Proc. ACM
MobiSys, Munich, Germany, Jun. 2018.

[9] D. V. Nguyen, H. T. T. Tran, A. T. Pham, and T. C. Thang, “An op-
timal tile-based approach for viewport-adaptive 360-degree video
streaming,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 1,
pp. 29–42, Mar. 2019.

[10] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai,
“A two-tier system for on-demand streaming of 360 degree video
over dynamic networks,” IEEE Trans. Emerg. Sel. Topics Circuits
Syst., vol. 9, no. 1, pp. 43–57, Mar. 2019.

[11] A. Borji, M.-M. Cheng, Q. Hou, H. Jiang, and J. Li, “Salient object
detection: A survey,” Computational Visual Media, vol. 5, no. 2, pp.
117–150, Jun. 2014.

[12] W. Shen, L. Ding, G. Zhai, Y. Cui, and Z. Gao, “A QoE-oriented
saliency-aware approach for 360-degree video transmission,” in
Proc. IEEE Int’l Conf. on Visual Communications and Image Processing
(VCIP), Sydney, Australia, Dec. 2019.

[13] Z. Jiang, X. Zhang, W. Huang, H. Chen, Y. Xu, J. N. Hwang,
Z. Ma, and J. Sun, “A hierarchical buffer management approach to
rate adaptation for 360-degree video streaming,” IEEE Trans. Veh.
Technol., vol. 69, no. 2, pp. 2157–2170, Feb. 2020.

[14] H. Yuan, S. Zhao, J. Hou, X. Wei, and S. Kwong, “Spatial and
temporal consistency-aware dynamic adaptive streaming for 360-
degree videos,” IEEE J. Sel. Topics Signal Process., vol. 14, no. 1, pp.
177–193, Jan. 2020.

[15] L. Xie, X. Zhang, and Z. Guo, “CLS: A cross-user learning based
system for improving QoE in 360-degree video adaptive stream-
ing,” in Proc. ACM Int’l Conf. on Multimedia (MM), Seoul, Republic
of Korea, Oct. 2018.

[16] M. Xiao, C. Zhou, V. Swaminathan, Y. Liu, and S. Chen, “BAS-360�:
Exploring spatial and temporal adaptability in 360-degree videos
over HTTP/2,” in Proc. IEEE INFOCOM, Honolulu, HI, Apr. 2018.

[17] A. Nguyen, Z. Yan, and K. Nahrstedt, “Your attention is unique:
Detecting 360-degree video saliency in head-mounted display for
head movement prediction,” in Proc.ACM Int’l Conf. on Multimedia,
Seoul, Republic of Korea, Oct. 2018.

[18] C.-L. Fan, J. Lee, W.-C. Lo, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“Fixation prediction for 360 video streaming in head-mounted
virtual reality,” in Proc. of ACM SIGMM Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV),
Taipei, Taiwan, Jun. 2017.

[19] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang, “Pano: Opti-
mizing 360 video streaming with a better understanding of quality
perception,” in Proc. ACM SIGCOMM, Beijing, China, Aug. 2019.

[20] A. Mokhtari, S. Shahrampour, A. Jadbabaie, and A. Ribeiro, “On-
line optimization in dynamic environments: Improved regret rates
for strongly convex problems,” in Proc. IEEE CDC, Las Vegas, NV,
Dec. 2016.

[21] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex opti-
mization approach to proactive network resource allocation,” IEEE
Trans. Signal Process., vol. 65, no. 24, pp. 6350–6364, Dec. 2017.

[22] S. Paternain and A. Ribeiro, “Online learning of feasible strategies
in unknown environments,” IEEE Trans. Autom. Control, vol. 62,
no. 6, pp. 2807–2822, Nov. 2017.

[23] J. Van Der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R.
Alface, T. Bostoen, and F. De Turck, “HTTP/2-based adaptive
streaming of HEVC video over 4G/LTE networks,” IEEE Commun.
Lett., vol. 20, no. 11, pp. 2177–2180, Nov. 2016.

[24] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Beyond
throughput: a 4G LTE dataset with channel and context metrics,”
in Proc. ACM Int’l Conf. on Multimedia Systems (MMSys), Amster-
dam, Netherlands, Jun. 2018.

[25] S. Knorr, C. Ozcinar, C. O. Fearghail, and A. Smolic, “Director’s
cut: A combined dataset for visual attention analysis in cinematic
VR content,” in Proc. ACM SIGGRAPH, London, United Kingdom,
Dec. 2018.

[26] FFmpeg, “H.264 video encoding guide,” https://trac.ffmpeg.org/
wiki/Encode/H.264, Accessed on Oct. 29, 2020.

[27] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a
large video streaming service,” in Proc. ACM SIGCOMM, Chicago,
IL, Aug. 2014.

[28] YouTube Help, “Choose live encoder settings, bitrates, and reso-
lutions,” https://support.google.com/youtube/answer/2853702?
hl=en, Accessed on Oct. 29, 2020.

[29] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan,
“Online optimization: Competing with dynamic comparators,” in
Proc. Int’l Conf. on Artificial Intelligence and Statistics (AISTATS), San
Diego, CA, May 2015.

[30] A. Biguri, “Multiple boxplot,” https://www.mathworks.com/
matlabcentral/fileexchange/47233-multiple boxplot-m?s tid=
srchtitle, Accessed on Oct. 29, 2020.

[31] FFmpeg, “About FFmpeg,” https://ffmpeg.org, Accessed on Oct.
29, 2020.

[32] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in
Proc. ACM SIGCOMM, London, United Kingdom, Aug. 2015.

Ming Tang (S’16, M’18) is a postdoctoral re-
search fellow in the Department of Electrical
and Computer Engineering of the University of
British Columbia, Vancouver, BC, Canada. She
received her Ph.D. degree from the Department
of Information Engineering, The Chinese Univer-
sity of Hong Kong, Hong Kong, China, in 2018.
Her research interests include mobile network-
ing and network economics.

Vincent W.S. Wong (S’94, M’00, SM’07, F’16)
received the B.Sc. degree from the University of
Manitoba, Winnipeg, MB, Canada, in 1994, the
M.A.Sc. degree from the University of Waterloo,
Waterloo, ON, Canada, in 1996, and the Ph.D.
degree from the University of British Columbia
(UBC), Vancouver, BC, Canada, in 2000. From
2000 to 2001, he worked as a systems engineer
at PMC-Sierra Inc. (now Microchip Technology
Inc.). He joined the Department of Electrical and
Computer Engineering at UBC in 2002 and is

currently a Professor. His research areas include protocol design, op-
timization, and resource management of communication networks, with
applications to wireless networks, smart grid, mobile edge computing,
and Internet of Things. Currently, Dr. Wong is an Executive Editorial
Committee Member of IEEE Transactions on Wireless Communications,
an Area Editor of IEEE Transactions on Communications and IEEE Open
Journal of the Communications Society, and an Associate Editor of IEEE
Transactions on Mobile Computing. He is a Technical Program Co-chair of
the IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). He has
served as a Guest Editor of IEEE Journal on Selected Areas in Commu-
nications and IEEE Wireless Communications. He has also served on the
editorial boards of IEEE Transactions on Vehicular Technology and Journal
of Communications and Networks. He was a Tutorial Co-Chair of IEEE
Globecom’18, a Technical Program Co-chair of IEEE SmartGridComm’14,
as well as a Symposium Co-chair of IEEE ICC’18, IEEE SmartGridComm
(’13, ’17) and IEEE Globecom’13. He is the Chair of the IEEE Vancouver
Joint Communications Chapter and has served as the Chair of the
IEEE Communications Society Emerging Technical Sub-Committee on
Smart Grid Communications. He is an IEEE Communications Society
Distinguished Lecturer (2019 - 2020).

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:08:35 UTC from IEEE Xplore. Restrictions apply.

