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Offloading in Mobile Edge Computing Systems
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Abstract—In mobile edge computing systems, an edge node may have a high load when a large number of mobile devices offload
their tasks to it. Those offloaded tasks may experience large processing delay or even be dropped when their deadlines expire. Due to
the uncertain load dynamics at the edge nodes, it is challenging for each device to determine its offloading decision (i.e., whether to
offload or not, and which edge node it should offload its task to) in a decentralized manner. In this work, we consider non-divisible and
delay-sensitive tasks as well as edge load dynamics, and formulate a task offloading problem to minimize the expected long-term cost.
We propose a model-free deep reinforcement learning-based distributed algorithm, where each device can determine its offloading
decision without knowing the task models and offloading decision of other devices. To improve the estimation of the long-term cost in
the algorithm, we incorporate the long short-term memory (LSTM), dueling deep Q-network (DQN), and double-DQN techniques.
Simulation results show that our proposed algorithm can better exploit the processing capacities of the edge nodes and significantly
reduce the ratio of dropped tasks and average delay when compared with several existing algorithms.

Index Terms—Mobile edge computing, computation offloading, resource allocation, deep reinforcement learning, deep Q-learning.
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1 INTRODUCTION

1.1 Background and Motivation

NOWADAYS, mobile devices are responsible for process-
ing many computational intensive tasks, such as data

processing and artificial intelligence. Despite the develop-
ment of mobile devices, these devices may not be able to
process all their tasks locally with a low latency due to their
limited computational resources. To facilitate efficient task
processing, mobile edge computing (MEC) [1], also known
as fog computing [2] and multi-access edge computing [3],
is introduced. MEC facilitates mobile devices to offload their
computational tasks to nearby edge nodes for processing in
order to reduce the task processing delay. It can also reduce
the ratio of dropped tasks for those delay-sensitive tasks.

In MEC, there are two main questions related to task
offloading. The first question is whether a mobile device
should offload its task to an edge node or not. The second
question is that if a mobile device decides to perform
offloading, then which edge node should the device off-
load its task to. To address these questions, some existing
works have proposed task offloading algorithms. Wang et
al. in [4] proposed an algorithm to determine the offloading
decisions to maximize the network revenue. Bi et al. in [5]
considered a wireless-powered MEC scenario and proposed
an algorithm to optimize the offloading and power transfer
decisions. In the works [4], [5], the processing capacity that
each device obtained from an edge node is independent of
the number of tasks offloaded to the edge node.
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In practice, however, edge nodes may have limited pro-
cessing capacities, so the processing capacity that an edge
node allocates to a mobile device depends on the load level
at the edge node (i.e., number of concurrent tasks offloaded
to the edge node). When a large number of mobile devices
offload their tasks to the same edge node, the load at that
edge node can be high, and hence those offloaded tasks
may experience large processing delay. Some of the tasks
may even be dropped when their deadlines expire. Some
existing works have addressed the load levels at the edge
nodes and proposed centralized task offloading algorithms.
Eshraghi et al. in [6] proposed an algorithm that optimizes
the offloading decisions of mobile devices, considering their
uncertain computational requirements. Lyu et al. in [7] fo-
cused on delay-sensitive tasks and proposed an algorithm
to minimize the task offloading energy consumption subject
to the task deadline constraint. In [8], Chen et al. designed
a centralized algorithm for a software-defined ultra-dense
network to minimize task delay. In [9], Poularakis et al.
studied the joint optimization of task offloading and rout-
ing. The operation of these centralized algorithms in [6]–[9],
however, may require complete information of the system.

Other works have proposed distributed task offloading
algorithms considering the load levels at the edge nodes,
where each mobile device makes its offloading decision in
a decentralized manner. Designing such a distributed algo-
rithm is challenging. This is because when a device makes
an offloading decision, the device does not know a priori the
load levels at the edge nodes, since the load also depends on
the offloading decisions of other mobile devices. In addition,
the load levels at the edge nodes may change over time.
To address these challenges, Lyu et al. in [10] focused on
divisible tasks and proposed a Lyapunov-based algorithm to
ensure the stability of the task queues. In [11], Li et al. con-
sidered the strategic offloading interaction among mobile
devices and proposed a price-based distributed algorithm.
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Shah-Mansouri et al. in [12] designed a potential game-based
offloading algorithm to maximize the quality-of-experience
of each device. Jošilo et al. in [13] designed a distributed
algorithm based on a Stackelberg game. Yang et al. in [14]
proposed a distributed offloading algorithm to address the
wireless channel competition among mobile devices. Neto
et al. in [15] proposed an estimation-based method, where
each device makes its offloading decision based on the
estimated processing and transmission capacities. Lee et al.
in [16] proposed an algorithm based on online optimization
techniques to minimize the maximum delay of the tasks.

In this work, we focus on the task offloading problem in
an MEC system and propose a distributed algorithm that
addresses the unknown load level dynamics at the edge
nodes. Comparing with the aforementioned works [10]–[16],
we consider a different and more realistic MEC scenario.
First, the existing work [10] considered divisible tasks (i.e.,
tasks can be arbitrarily divided), which may not be realistic
due to the dependency among the bits in a task. Although
the works [11]–[15] considered non-divisible tasks, they do
not consider the underlying queuing systems. As a result,
the processing and transmission of each task should always
be accomplished within one time slot (or before the arrival
of the next task), which may not always be guaranteed in
practice. Different from those works [10]–[15], we consider
non-divisible tasks together with queuing systems and take
into account the practical scenario where the processing and
transmission of a task can continue for multiple time slots.
This scenario is challenging to deal with, because when a
new task arrives, its delay can be affected by the decisions of
the tasks of other devices arrived in the previous time slots.
Second, different from the related works [10]–[16] consid-
ered delay-tolerant tasks, we focus on delay-sensitive tasks
with processing deadlines. This is challenging to address
since the deadlines can affect the load levels at the edge
nodes and hence the delay of the offloaded tasks.

Under the aforementioned MEC system, it is difficult to
apply traditional methods such as game theory and online
optimization due to the complicated interaction among the
tasks. To address the challenges, in this work, we propose to
use deep Q-learning [17], which is a model-free deep rein-
forcement learning (DRL) technique. This approach enables
the agents to make decisions based on local observations
without the knowledge of the system modeling and dynam-
ics. Some existing works such as [18]–[20] have proposed
DRL-based algorithms for MEC systems, while they focused
on centralized offloading algorithms. Zhao et al. in [21]
proposed a DRL-based distributed offloading algorithm that
addresses the wireless channel competition among mobile
devices, while the algorithm at each mobile device requires
the quality-of-service information of other mobile devices.
Different from those works [18]–[21], we aim to propose
a DRL-based distributed algorithm that addresses the un-
known load dynamics at edge nodes. It enables each mobile
device to make its offloading decision without knowing the
information (e.g., task models, offloading decisions) of other
mobile devices.

1.2 Solution Approach and Contributions
In this work, we take into account the unknown load level
dynamics at the edge nodes and propose a DRL-based

distributed offloading algorithm for the MEC system. In
the proposed algorithm, each mobile device can determine
the offloading decision in a decentralized manner using its
information observed locally, including the size of its task,
the information of its queues, and the historical load levels
at the edge nodes. The main contributions are as follows.

• Task Offloading Problem for the MEC System: We for-
mulate a task offloading problem for non-divisible
and delay-sensitive tasks. The problem takes into
account the load level dynamics at the edge nodes
and aims at minimizing the expected long-term cost
of the tasks (considering the delay of the tasks and
the penalties for those tasks being dropped).

• DRL-based Task Offloading Algorithm: To achieve the
expected long-term cost minimization, we propose
a model-free DRL-based distributed offloading algo-
rithm that enables each mobile device to make its
offloading decision without knowing the task models
and offloading decisions of other mobile devices. To
improve the estimation of the expected long-term
cost in the proposed algorithm, we incorporate the
long short-term memory (LSTM), dueling deep Q-
network (DQN), and double-DQN techniques.

• Performance Evaluation: We perform simulations and
show that when compared with the potential game
based offloading algorithm (PGOA) in [14] and the
user-level online offloading framework (ULOOF) in
[15], our proposed algorithm can better exploit the
processing capacities of the mobile devices and edge
nodes, and it can significantly reduce the ratio of
dropped tasks and the average delay.

The rest of this paper is organized as follows. The
system model is presented in Section 2, and the problem
formulation is given in Section 3. We present the DRL-
based algorithm in Section 4 and evaluate its performance
in Section 5. Conclusion is given in Section 6. For notation,
we use Z++ to denote the set of positive integers.

2 SYSTEM MODEL

We consider a set of edge nodes N = {1, 2, . . . , N} and a
set of mobile devicesM = {1, 2, . . . ,M} in an MEC system.
We focus on one episode that contains a set of time slots
T = {1, . . . , T}, where each time slot has a duration of ∆
seconds. In the following, we present the mobile device and
edge node models, with an illustration given in Fig. 1.

2.1 Mobile Device Model
We focus on computational tasks of mobile devices, where
each task is non-divisible such that it can either be processed
locally or be offloaded to an edge node for processing. We
assume that at the beginning of each time slot, a mobile
device has a new task arrival with a certain probability. This
assumption is consistent with some existing works (e.g.,
[22]). When a mobile device has a new task arrival, it first
needs to decide whether to process the task locally or offload
it to an edge node. If the mobile device decides to process
the task locally, then its scheduler (see Fig. 1) will place the
task to the computation queue for processing. Otherwise,
the mobile device needs to decide which edge node the task

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:07:55 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3036871, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. PP, NO. 99, MONTH 2020 3

Mobile Device m Edge Node n

…

fm
device

ρm

ym,n(t)
fm,n
tran

km(t)
queues Mxm(t)

1− xm(t)

CPU

Wireless  
Link

CPU

Computation queue

Transmission queue Queue for device n

(with         active)Bn(t)
δm
comp(t)

δm
tran (t) qm,n

edge (t)

Scheduler

fn
edge

ρmBn(t)km,n
edge (t)

λm(t)
λm,n
edge (t)

Fig. 1: An illustration of an MEC system with a mobile device m ∈ M
and an edge node n ∈ N .

is offloaded to. The scheduler will then place the task to the
transmission queue for offloading. The offloaded task will
then be sent to the chosen edge node through a wireless link.
For the computation (or transmission) queue, we assume
that if the processing (or transmission) of a task is completed
in a time slot, then the next task in the queue will be
processed (or transmitted) at the beginning of the next time
slot. This assumption is consistent with some existing works
considering queuing dynamics in an MEC system (e.g., [22]).

In the following, we first present the task model and the
task offloading decision, respectively. Then, we introduce
the computation and transmission queues.

2.1.1 Task Model

At the beginning of time slot t ∈ T , if mobile device m ∈M
has a newly arrived task, then we define a variable km(t) ∈
Z++ to denote the unique index of the task. If mobile device
m does not have a new task arrival at the beginning of time
slot t, then km(t) is set to zero for presentation simplicity.

Let λm(t) (in bits) denote the number of bits of the newly
arrived task at the beginning of time slot t ∈ T . If there
exists a new task km(t) at the beginning of time slot t, then
λm(t) is equal to the size of task km(t). Otherwise, λm(t)
is set to zero. We set the size of task km(t) to be from a
discrete set Λ , {λ1, λ2, · · · , λ|Λ|}with |Λ| available values.
Hence, λm(t) ∈ Λ ∪ {0}. In addition, task km(t) requires a
processing density of ρm (in CPU cycles per bit), i.e., the
number of CPU cycles required to process a unit of data.
Task km(t) has a deadline τm (in time slots). That is, if task
km(t) has not been completely processed by the end of time
slot t+ τm − 1, then it will be dropped immediately.

2.1.2 Task Offloading Decision

If mobile device m ∈ M has a newly arrived task km(t) at
the beginning of time slot t ∈ T , then it needs to make the
offloading decision for task km(t) as follows.

First, let binary variable xm(t) ∈ {0, 1} denote whether
task km(t) is to be processed locally or offloaded to an
edge node. We set xm(t) = 1 (or 0) if the task is to be
processed locally (or to be offloaded to an edge node). At
the beginning of time slot t, λm(t)xm(t) is the number of
bits arrived at the computation queue of mobile device m,
and λm(t)(1 − xm(t)) is the number of bits arrived at the
transmission queue of mobile device m.

Second, if task km(t) is to be offloaded to an edge node,
then let binary variable ym,n(t) ∈ {0, 1} denote whether
task km(t) is offloaded to edge node n ∈ N or not. We set
ym,n(t) = 1 if task km(t) is offloaded to edge node n, and

ym,n(t) = 0 otherwise. Let ym(t) = (ym,n(t), n ∈ N ). Note
that each task can be offloaded to one edge node, i.e.,∑

n∈N
ym,n(t) = 1(xm(t) = 0), m ∈M, t ∈ T , (1)

where the indicator 1(z ∈ Z) = 1 if z ∈ Z , and is equal to
zero otherwise.

2.1.3 Computation Queue
The computation queue operates in a first-in first-out (FIFO)
manner. The arrivals are the tasks to be processed locally. We
consider one CPU which processes the tasks in the computa-
tion queue. Let fdevice

m (in CPU cycles per second) denote the
processing capacity of the CPU of mobile device m ∈ M.
The value of fdevice

m is a constant. At the beginning of time
slot t ∈ T , if task km(t) is placed in the computation queue,
then we define lcomp

m (t) ∈ T to denote the time slot when
task km(t) has either been processed or dropped. Without
loss of generality, if either task km(t) is not placed in the
computation queue or km(t) = 0, then we set lcomp

m (t) = 0.
Let δcomp

m (t) (in time slots) denote the number of time
slots that task km(t) will wait for processing if it is placed
in the computation queue. Note that mobile device m will
compute the value of δcomp

m (t) before it decides the queue to
place the task. Given lcomp

m (t′) for t′ < t, the value of δcomp
m (t)

is computed as follows. For m ∈M and t ∈ T ,

δcomp
m (t) =

[
max

t′∈{0,1,...,t−1}
lcomp
m (t′)− t+ 1

]+

, (2)

where the operator [z]+ = max{0, z}, and we set lcomp
m (0) =

0. Specifically, the term maxt′∈{0,1,2,...,t−1} l
comp
m (t′) deter-

mines the time slot when all the tasks placed in the compu-
tation queue before time slot t has either been processed
or dropped. Hence, δcomp

m (t) determines the number of
time slots that task km(t) should wait for processing. For
example, suppose task km(1) is placed in the computation
queue, and its processing will be completed in time slot
5, i.e., lcomp

m (1) = 5. Meanwhile, suppose km(2) = 0, i.e.,
l
comp
m (2) = 0. At the beginning of time slot 3, if task km(3)

is placed in the computation queue, then its processing will
start after time slot lcomp

m (1) = 5. Hence, it should wait for
δ

comp
m (3) = [max{5, 0} − 3 + 1]+ = 3 time slots.

If mobile device m ∈ M places task km(t) in the
computation queue at the beginning of time slot t ∈ T (i.e.,
xm(t) = 1), then task km(t) will have either been processed
or dropped in time slot lcomp

m (t):

lcomp
m (t) = min

{
t+ δcomp

m (t) +

⌈
λm(t)

fdevice
m ∆/ρm

⌉
− 1,

t+ τm − 1

}
, (3)

where d·e is the ceiling function. Specifically, the processing
of task km(t) will start at the beginning of time slot t +
δ

comp
m (t). The number of time slots required to process the

task is
⌈
λm(t)/(fdevice

m ∆/ρm)
⌉
. Hence, the first term in the

min operator is the time slot when the processing of task
km(t) will be completed without considering the deadline of
the task. The second term is the time slot when task km(t)
will be dropped. As a result, lcomp

m (t) determines the time
slot when task km(t) will either be processed or dropped.
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2.1.4 Transmission Queue
The transmission queue operates in a FIFO manner. The
arrivals are the tasks to be offloaded to the edge nodes. The
wireless network link interface at the mobile device sends
the tasks in the transmission queue to the chosen edge node.
The wireless network model and the transmission rate from
a mobile device to an edge node are as follows. We consider
a wireless network model where mobile devices transmit
on orthogonal channels. The wireless transmission from a
mobile device to an edge node suffers from path loss and
small-scale fading [11], [23]. Let |hm,n|2 denote the channel
gain from mobile device m ∈ M to edge node n ∈ N . Let
P denote the transmission power of a mobile device. The
transmission rate from mobile device m to edge node n,
denoted by rtran

m,n (in bits per second), is computed as follows:

rtran
m,n = W log2

(
1 +
|hm,n|2P

σ2

)
, m ∈ N , n ∈ N , (4)

where W denotes the bandwidth allocated to a channel, and
σ2 denotes the received noise power at the edge node. The
value of rtran

m,n is assumed to be a constant.
At the beginning of time slot t ∈ T , if task km(t)

is placed in the transmission queue for offloading, then
we define a variable ltran

m (t) ∈ T to denote the time slot
when task km(t) has been either sent or dropped. Without
loss of generality, if either task km(t) is not placed in the
transmission queue or km(t) = 0, then we set ltran

m (t) = 0.
Let δtran

m (t) (in time slots) denote the number of time slots
that task km(t) should wait for transmission if it is placed
in the transmission queue. Note that mobile device m will
compute the value of δtran

m (t) before it has decided on which
queue to place the task. Given ltran

m (t′) for t′ < t, the value
of δtran

m (t) is computed as follows. For m ∈M and t ∈ T ,

δtran
m (t) =

[
max

t′∈{0,1,...,t−1}
ltran
m (t′)− t+ 1

]+

, (5)

where we set ltran
m (0) = 0 for presentation simplicity.

If device m ∈ M places task km(t) in the transmission
queue in time slot t ∈ T (i.e., xm(t) = 0), then task km(t)
will either be sent or dropped in time slot ltran

m (t):

ltran
m (t) = min

{
t+ δtran

m (t) +

⌈∑
n∈N

ym,n(t)λm(t)

rtran
m,n∆

⌉
− 1,

t+ τm − 1

}
. (6)

2.2 Edge Node Model

Each edge node n ∈ N maintains M queues, each queue
corresponding to a mobile device in setM. We assume that
after an offloaded task is received by an edge node in a time
slot, the task will be placed in the corresponding queue at
the edge node at the beginning of the next time slot.

If a task of mobile device m ∈ M is placed in its
queue at edge node n ∈ N at the beginning of time slot
t ∈ T , then we define a variable kedge

m,n(t) ∈ Z++ to denote
the unique index of the task. Specifically, if task km(t′) for
t′ ∈ {1, 2, . . . , t − 1} is sent to edge node n in time slot
t−1, then kedge

m,n(t) = km(t′). Note that if there does not exist

such a task, then we set kedge
m,n(t) = 0. Let λedge

m,n(t) ∈ Λ ∪ {0}
(in bits) denote the number of bits arrived in the queue of
mobile device m at edge node n at the beginning of time
slot t. If task kedge

m,n(t) is placed in the corresponding queue
at the beginning of time slot t, then λ

edge
m,n(t) is equal to the

size of task kedge
m,n(t). Otherwise, λedge

m,n(t) = 0.
In the following, we first describe the queues. Then, we

derive the task processing or dropping time.

2.2.1 Queues at Edge Nodes
The queue associated with a mobile device at an edge node
operates in a FIFO manner. The arrivals of the queue are the
tasks offloaded by the mobile device to that edge node. Let
q

edge
m,n(t) (in bits) denote the length of the queue of mobile

device m ∈ M at edge node n ∈ N at the end of time slot
t ∈ T . Among those queues at edge node n, we refer to the
queue of mobile device m as an active queue in time slot t if
either there is a task of mobile device m arrived at the queue
in time slot t (i.e., λedge

m,n(t) > 0) or the queue is non-empty
at the end of time slot t− 1 (i.e., qedge

m,n(t− 1) > 0). Let Bn(t)
denote the set of active queues at edge node n in time slot t.
That is, for n ∈ N and t ∈ T ,

Bn(t) = {m | λedge
m,n(t) > 0 or qedge

m,n(t−1) > 0, m ∈M}. (7)

Let Bn(t) denote the number of active queues at edge node
n in time slot t, i.e., Bn(t) = |Bn(t)|.

We consider a scenario where the tasks of mobile devices
have the same priority.1 Each edge node has one CPU for
processing the tasks in the queues. In each time slot t ∈ T ,
the active queues at edge node n ∈ N (i.e., the queues in set
Bn(t)) equally share the processing capacity of the CPU at
edge node n. This is the generalized processor sharing (GPS)
model with equal processing capacity sharing [24]. Note that
since the number of active queues Bn(t) is time-varying
and unknown a priori, the processing capacity allocated to
each queue can vary across time. Meanwhile, the mobile
devices and edge nodes may not have the information of
this allocated processing capacity beforehand.

Let f edge
n (in CPU cycles per second) denote the process-

ing capacity of edge node n. We assume that mobile devices
are aware of the value of f edge

n for n ∈ N . Let eedge
m,n(t) (in

bits) denote the number of bits of the tasks dropped by the
queue at the end of time slot t ∈ T . Hence, the queue length
is updated as follows. For m ∈M, n ∈ N , and t ∈ T ,

qedge
m,n(t) =

[
qedge
m,n(t− 1) + λedge

m,n(t)

− f
edge
n ∆

ρmBn(t)
1 (m ∈ Bn(t))− eedge

m,n(t)

]+

. (8)

2.2.2 Task Processing or Dropping
If task k

edge
m,n(t) of mobile device m ∈ M is placed in the

corresponding queue at edge node n ∈ N at the beginning
of time slot t ∈ T , then we define a variable ledge

m,n(t) ∈ T to

1. This work can be extended to the scenario where the tasks of
different mobile devices have different priorities. This can be achieved
by setting different weights to the queues of different mobile devices
and allocating the processing capacity based on the weights.
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denote the time slot when this task has either been processed
or dropped by edge node n. Due to the uncertain future
load at edge node n, mobile device m and edge node n

are unaware of the value of ledge
m,n(t) until the associated task

k
edge
m,n(t) has either been processed or dropped. Without loss

of generality, if kedge
m,n(t) = 0, then we set ledge

m,n(t) = 0.
For the definition of variable ledge

m,n(t), let l̂edge
m,n(t) denote

the time slot when the processing of task kedge
m,n(t) starts, i.e.,

for m ∈M, n ∈ N , and t ∈ T ,

l̂edge
m,n(t) = max

{
t, max
t′∈{0,1,...,t−1}

ledge
m,n(t′) + 1

}
, (9)

where we set ledge
m,n(0) = 0. Specifically, the time slot when

the processing of task k
edge
m,n(t) starts is no earlier than the

time slot when the task arrives in the queue or when each
task arrived earlier has been processed or dropped.

Given the realization of the load levels, ledge
m,n(t) satisfies

the following constraints. For m ∈M, n ∈ N , t ∈ T ,

ledge
m,n(t)∑

t′=l̂
edge
m,n(t)

f
edge
n ∆

ρmBn(t′)
1 (m ∈ Bn(t′)) ≥ λedge

m,n(t), (10)

ledge
m,n(t)−1∑
t′=l̂

edge
m,n(t)

f
edge
n ∆

ρmBn(t′)
1 (m ∈ Bn(t′)) < λedge

m,n(t). (11)

Specifically, the size of task kedge
m,n(t) is no larger than the total

processing capacity that edge node n allocated to mobile
device m from time slot l̂edge

m,n(t) to l
edge
m,n(t), and it is larger

than that from time slot l̂edge
m,n(t) to ledge

m,n(t)− 1.

3 TASK OFFLOADING PROBLEM IN MEC
At the beginning of each time slot, each mobile device
observes its state (e.g., task size, queue information). If there
is a new task to be processed, then the mobile device chooses
an action for the task. The state and action will result in a
cost (i.e., the delay of the task if the task is processed, or a
penalty if it is dropped) for the mobile device. The objective
of each device is to minimize its expected long-term cost by
optimizing the policy mapping from states to actions.

3.1 State
Let matrix H(t) denote the history of the load level (i.e.,
the number of active queues) of each edge node within the
previous T step time slots (i.e., from time slot t−T step to time
slot t − 1). It is a matrix with size T step × N . Let {H(t)}i,j
denote the (i, j) element of H(t), which corresponds to the
load level of edge node j in the ith time slot starting from
time slot t− T step (i.e., time slot t− T step + i− 1). That is,

{H(t)}i,j = Bj(t− T step + i− 1). (12)

To obtain H(t), we assume that each edge node broadcasts
its number of active queues at the end of each time slot. Even
when all M queues at an edge node are active, the number
of active queues can be represented by blog2Mc+1 bits. For
example, if there are 1000 mobile devices, then a maximum
of 10 bits are required. Hence, the broadcast of the number
of active queues only incurs a small signaling overhead.

At the beginning of time slot t ∈ T , each device m ∈M
observes its state information, including task size, queue
information, and the load level history at edge nodes. Specif-
ically, mobile device m observes the following state:2

sm(t) =
(
λm(t), δcomp

m (t), δtran
m (t), qedge

m (t− 1),H(t)
)
, (13)

where vector qedge
m (t− 1) = (q

edge
m,n(t− 1), n ∈ N ). Let S de-

note the discrete and finite state space of each mobile device,
i.e., S = Λ × {0, 1, . . . , T}2 × QN × {0, 1, . . . ,M}T step×N ,
where Q denotes the set of the available values of the
queue length at an edge node within the T time slots. Note
that mobile device m ∈ M can obtain state information
λm(t), δcomp

m (t), and δtran
m (t) through local observation at the

beginning of time slot t. Meanwhile, mobile device m can
compute qedge

m (t − 1) locally according to (8). Specifically,
mobile device m is aware of the number of bits that it has
transmitted to an edge node in each time slot. In addition,
it can compute the number of bits that have been processed
or being dropped by an each edge node in each time slot.3

3.2 Action
At the beginning of time slot t ∈ T , if mobile device m ∈ N
has a new task arrival km(t), then it will choose actions for
task km(t): (a) whether to process the task locally or offload
it to an edge node, i.e., xm(t); (b) which edge node the task
is offloaded to, i.e., ym(t). Hence, the action of device m in
time slot t is represented by the following action vector:

am(t) = (xm(t),ym(t)) . (14)

Let A denote the action space, i.e., A = {0, 1}1+N .

3.3 Cost
If a task has been processed, then the delay of the task is
the duration between the task arrival and the time when the
task has been processed.4 Let Delaym(sm(t),am(t)) (in time
slots) denote the delay of task km(t), given state sm(t) and
action am(t). For m ∈M and t ∈ T , if xm(t) = 1, then

Delaym(sm(t),am(t)) = lcomp
m (t)− t+ 1; (15)

if xm(t) = 0, then

Delaym(sm(t),am(t))

=
∑
n∈N

T∑
t′=t

1(kedge
m,n(t′) = km(t))ledge

m,n(t′)− t+ 1. (16)

2. The queuing delay of a task at an edge node is unknown at the
time when the offloading decision of the task is to be made, due to the
unknown load dynamics at the edge node. Thus, we did not include
it as state information. In addition, the operation of our proposed
algorithm does not rely on such queuing delay at the edge node.

3. We have assumed that edge nodes send the number of active
queues by broadcast in each time slot. Hence, a mobile device can
compute the number of its bits processed by an edge node in each
time slot. It can compute the number of bits from its tasks dropped by
an edge node based on the deadline of those tasks.

4. The delay of a task includes the queuing delay, processing delay,
and transmission delay (if the task has been offloaded). Instead of
computing these delays separately and then summing them up, the
mobile device can determine the delay of the task by computing
the duration between the task arrival and when the task has been
processed. This is reasonable because in practical systems, when a task
has been processed, the mobile device knows both time instances.
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Specifically, consider task km(t) arrived at the beginning
of time slot t. If task km(t) is placed in the compu-
tation queue for local processing, then l

comp
m (t) is the

time slot when the task has been processed. If task
km(t) is placed in the transmission queue for offloading,
then

∑
n∈N

∑T
t′=t 1(k

edge
m,n(t′) = km(t))l

edge
m,n(t′) is the time

slot when the task has been processed. This is because
1(k

edge
m,n(t′) = km(t)) = 1 indicates that task km(t) has

arrived at the queue of edge node n ∈ N at the beginning
of time slot t′, and ledge

m,n(t′) is the time slot when the task of
device m arrived at edge node n at the beginning of time
slot t′ has been processed.

There is a cost cm(sm(t),am(t)) associated with task
km(t). If task km(t) has been processed, then

cm(sm(t),am(t)) = Delaym(sm(t),am(t)). (17)

On the other hand, if task km(t) has been dropped, then

cm(sm(t),am(t)) = C, (18)

where C > 0 is a constant penalty. Without loss of gener-
ality, if task km(t) = 0, then we set cm(sm(t),am(t)) = 0.
In the remaining part of this work, we use the short form
cm(t) to denote cm(sm(t),am(t)). Note that in practical
systems, there may be other kinds of costs, such as energy
consumption and the subscription fee charged by the edge
nodes. These costs can be incorporated into this work by
including the corresponding terms in equations (17) and
(18). As the proposed DRL-based algorithm is a model-free
approach, it will still be applicable to the extended scenario.

3.4 Problem Formulation
A policy of device m ∈ M is a mapping from its state to its
action, i.e., πm : S → A. Let γ ∈ (0, 1] denote the discount
factor that characterizes the discounted cost in the future.
We aim to find the optimal policy π∗m for each device m
such that its expected long-term cost is minimized, i.e.,

π∗m = arg minimize
πm

E

[∑
t∈T

γt−1cm(t)

∣∣∣∣∣ πm
]

subject to constraints (1)−(6), (8)−(11),
(15)−(18).

(19)

The expectation E[·] is with respect to the time-varying sys-
tem parameters, e.g., the task arrivals and the computational
requirements of the tasks of all mobile devices as well as the
decisions of the mobile devices other than device m.

4 DRL-BASED OFFLOADING ALGORITHM

In this section, we propose a DRL-based offloading al-
gorithm that enables the distributed offloading decision
making of each mobile device. This algorithm is based on
deep Q-learning [17]. As deep Q-learning is a model-free ap-
proach, the proposed algorithm can address the complicated
system setting and interaction among the mobile devices
without a priori knowledge of the system and interaction
dynamics. Meanwhile, the proposed algorithm can handle
the potentially large state space of the system.

In the proposed algorithm, each mobile device aims to
learn a mapping from each state-action pair to a Q-value,

Input  
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Fig. 2: The neural network of mobile device m ∈ M with parameter
vector θm, which maps from state sm(t) ∈ S to the Q-value of each
action a ∈ A.

which characterizes the expected long-term cost of the state-
action pair. The mapping is determined by a neural network.
Based on the mapping, each device can select the action
inducing the minimum Q-value under its state to minimize
its expected long-term cost. In the following, we present the
neural network and the DRL-based algorithm, respectively.

4.1 Neural Network
The objective of the neural network is to find a mapping
from each state to a set of Q-values of the actions. Fig. 2
shows an illustration of the neural network of mobile device
m ∈ M. Specifically, the state information is passed to the
neural network through an input layer. Then, we use an
LSTM layer to predict the load levels (at the edge nodes) in
the near future based on the load level history. After that, the
mapping from all the states (except the load level history)
and the predicted load levels to the Q-values are learned
through two fully-connected (FC) layers. Meanwhile, duel-
ing DQN technique [25] is applied to improve the learning
efficiency of the mapping from states to Q-values through
an advantage and value (A&V) layer. Finally, the Q-values
of the actions are determined in the output layer. Let θm
denote the parameter vector of the neural network of device
m, which includes the weights of all connections and the
biases of all neurons from the input layer to the A&V layer.
The details of each layer are as follows.

4.1.1 Input Layer
This layer is responsible for taking the state as input and
passing them to the following layers. For mobile device
m ∈ M, the state information λm(t), δcomp

m (t), δtran
m (t), and

q
edge
m (t− 1) will be passed to the FC layer, and H(t) will be

passed to the LSTM layer for load level prediction.

4.1.2 LSTM Layer
This layer is responsible for learning the dynamics of the
load levels at edge nodes and predicting the load levels
in the near future. This is achieved by including an LSTM
network [26], which is a widely used approach for learning
the temporal dependence of sequential observations and
predicting the future variation of time series.5

5. In this work, we use the conventional LSTM network. This work
can be extended by applying variants of LSTM network (e.g., gated
recurrent units), which may further enhance the algorithm performance
and reduce the computational complexity.
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Fig. 3: An LSTM network with T step LSTM units.

Specifically, the LSTM network takes the matrix H(t) as
input so as to learn the load level dynamics. Fig. 3 shows the
structure of an LSTM network. The LSTM network contains
T step LSTM units, each of which contains a set of hidden
neurons. Each LSTM unit takes one row of H(t) as input,
we let {H(t)}i denote the ith row of H(t) in Fig. 3. These
LSTM units are connected in sequence so as to keep track of
the variations of the sequences from {H(t)}1 to {H(t)}T step ,
which can reveal the variations of the load levels at the edge
nodes among time slots. The LSTM network will output the
information that indicates the dynamics of the load levels in
the future in the last LSTM unit, where the output will be
passed to the next layer for further learning.

4.1.3 FC Layers
The two FC layers are responsible for learning the mapping
from the state and the learned load level dynamics to the Q-
values of the actions. Each FC layer contains a set of neurons
with rectified linear unit (ReLU), which are connected with
the neurons in the previous and following layers.

4.1.4 A&V Layer and Output Layer
The A&V layer and the output layer implement the dueling-
DQN technique [25] and determine the Q-value of each
action as output. The main idea of the dueling-DQN is to
first separately learn a state-value (i.e., the portion of the Q-
value resulting from the state) and action-advantage values
(i.e., the portion of the Q-value resulting from the actions).
It then uses the state-value and action-advantage values to
determine the Q-values of state-action pairs. This technique
can improve the estimation of the Q-values through sepa-
rately evaluating the expected long-term cost resulting from
a state and an action.

The A&V layer contains two networks, denoted by net-
work A and network V (see Fig. 2). The network A contains
an FC network, and it is responsible for learning the action-
advantage value of each action a ∈ A. For mobile device
m ∈ M, let Am(sm(t),a;θm) denote the action-advantage
value of action a under state sm(t) ∈ S with network
parameter vector θm. The network V contains an FC net-
work, and it is responsible for learning the state-value. For
mobile device m, let Vm(sm(t);θm) denote state-value of
state sm(t) with network parameter vector θm. The values
of Am(sm(t),a;θm) and Vm(sm(t);θm) are determined by
the parameter vector θm and the neural network structure
from the input layer to the A&V layer, where vector θm is
adjustable and will be trained in the DRL-based algorithm.

Algorithm 1 DRL-based Algorithm at Device m ∈M

1: for episode = 1, 2, . . . , E do
2: Initialize sm(1);
3: for time slot t ∈ T do
4: if device m has a new task arrival km(t) then
5: Send a parameter request to edge node nm;
6: Receive network parameter vector θm;
7: Select an action am(t) according to (22);
8: end if
9: Observe the next state sm(t+ 1);

10: Observe a set of costs {cm(t′), t′ ∈ T̃m,t};
11: for each task km(t′) with t′ ∈ T̃m,t do
12: Send (sm(t′),am(t′), cm(t′), sm(t′ + 1)) to nm;
13: end for
14: end for
15: end for

Based on the A&V layer, for mobile device m ∈ M, the
resulting Q-value of action a ∈ A under state sm(t) ∈ S in
the output layer is given as follows [25]:

Qm(sm(t),a;θm) = Vm(sm(t);θm) +

(
Am(sm(t),a;θm)

− 1
|A|
∑

a′∈AAm(sm(t),a′;θm)

)
,

(20)
which is the sum of the state-value under the correspond-
ing state and the additional action-advantage value of the
corresponding action (with respect to the average action-
advantage value under the state over all actions).

4.2 DRL-Based Algorithm
In our proposed DRL-based algorithm, we let edge nodes
help mobile devices to train the neural network to alleviate
the computational loads at the mobile devices. Specifically,
for each mobile device m ∈ M, there is an edge node
nm ∈ N which helps device m with the training. This
edge node nm can be the edge node that has the maximum
transmission capacity with mobile device m. For presenta-
tion convenience, let Mn ⊂ M denote the set of mobile
devices whose training is performed by edge node n ∈ N ,
i.e.,Mn = {m ∈M | nm = n}.

The DRL-based algorithm to be executed at mobile de-
vice m ∈ M and edge node n ∈ N are given in Algorithms
1 and 2, respectively. The key idea of the algorithm is to
train the neural network using the experience (i.e., state,
action, cost, and next state) of the mobile device to obtain
the mapping from state-action pairs to Q-values, based on
which the mobile device can select the action leading to the
minimum Q-value under the observed state to minimize its
expected long-term cost.

In the DRL-based algorithm, the edge node n ∈ N
maintains a replay memory Dm for device m ∈ Mn.
The replay memory Dm stores the observed experience
(sm(t),am(t), cm(t), sm(t+1)) of mobile devicem for some
t ∈ T , where we refer (sm(t),am(t), cm(t), sm(t + 1))
as experience t of mobile device m. Meanwhile, the edge
node n ∈ N maintains two neural networks for device
m ∈ Mn, including an evaluation network, denoted by
Netm, and a target network, denoted by Target Netm. The
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evaluation network Netm is used for action selection. The
target network Target Netm is used for characterizing a
target Q-value, which approximates the expected long-term
cost of an action under the observed state. This target Q-
value will be used for updating Netm by minimizing the
difference between the Q-value under Netm and the target
Q-value. Note that both Netm and Target Netm have the
same neural network structure, as presented in Section
4.1, while they have different network parameter vectors
θm and θ−m, respectively. Hence, the Q-values of Netm
and Target Netm are represented by Qm(sm(t),a;θm) and
Qm(sm(t),a;θ−m) under observed state sm(t) ∈ S and
action a ∈ A, respectively. The initialization of the replay
memory Dm and two neural networks are given in steps
1−3 in Algorithm 2.

4.2.1 Algorithm 1 at Mobile Device m ∈M

We consider multiple episodes, where E denotes the num-
ber of episodes. At the beginning of each episode, mobile
device m ∈M initializes the state, i.e.,

sm(1) = (λm(1), δcomp
m (1), δtran

m (1), qedge
m (0),H(1)), (21)

where we set qedge
m,n(0) = 0 for all n ∈ N , and H(1) is a zero

matrix with size T step × N . At the beginning of time slot
t ∈ T , if mobile device m has a new task arrival km(t), then
it will send a parameter request to edge node nm in order
to update the parameter vector θm that it uses for making
the task offloading decision. To reduce the communication
overhead and address the potential scalability issue due
to the neural network parameter transmission, the mobile
device may not request the parameter vector in every time
slot when it has a new task arrival. That is, steps 5-6 in Algo-
rithm 1 can be omitted in some time slots. Intuitively, when
the frequency that a mobile device requests the parameter
vector is small, the communication overhead will also be
small. However, it may reduce the rate of convergence of
the proposed algorithm. We empirically evaluate how such
a frequency affects the algorithm convergence in Section 5.1.

Based on the parameter vector θm of Netm, mobile
device m will choose its action for task km(t) as follows:

am(t) =

{
a random action from A, w.p. ε,
arg min

a∈A
Qm(sm(t),a;θm), w.p. 1− ε, (22)

where ‘w.p.’ is the short-form for “with probability”, and
ε is the probability of random exploration. Intuitively, with
probability 1− ε, the device chooses the action that leads to
the minimum Q-value under state sm(t) based on Netm.

At the beginning of the next time slot (i.e., time slot t+1),
mobile device m observes the next state sm(t + 1). On the
other hand, as the processing and the transmission of a task
may continue for multiple time slots, the cost cm(t), which
depends on the delay of task km(t), may not be observed at
the beginning of time slot t + 1. Instead, mobile device m
may observe a set of costs belonging to some tasks km(t′)
with time slot t′ ≤ t. To address this, for devicem, we define
T̃m,t ⊂ T as the set of time slots such that each task km(t′)

Algorithm 2 DRL-Based Algorithm at Edge Node n ∈ N
1: Initialize replay memory Dm for m ∈ Mn and Count := 0;
2: Initialize Netm with random θm for m ∈ Mn;
3: Initialize Target Netm with random θ−m for m ∈ Mn;
4: while True do
5: if receive a parameter request from m ∈ Mn then
6: Send θm to device m;
7: end if
8: if receive an experience (sm(t),am(t), cm(t), sm(t + 1))

from m ∈ Mn and Converge Indicator = 0 then
9: Store (sm(t),am(t), cm(t), sm(t+ 1)) in Dm;

10: Sample a set of experiences (denoted by I) from Dm;
11: for each experience i ∈ I do
12: Obtain experience (sm(i),am(i), cm(i), sm(i+ 1));
13: Compute Q̂

Target
m,i according to (26);

14: end for
15: Set vector Q̂

Target
m := (Q̂

Target
m,i , i ∈ I);

16: Update θm to minimize L(θm, Q̂
Target
m ) in (24);

17: Count := Count + 1;
18: if mod(Count, Replace Threshold) = 0 then
19: θ−m := θm;
20: end if
21: end if
22: end while

associated with time slot t′ ∈ T̃m,t has been processed or
dropped in time slot t. Set T̃m,t is defined as follows:

T̃m,t =

{
t′

∣∣∣∣∣ t′ = 1, 2, . . . , t, λm(t′) > 0, lcomp
m (t′) = t

or
∑
n∈N

t∑
i=t′

1(kedge
m,n(i) = km(t′))ledge

m,n(i) = t

}
. (23)

In (23), λm(t′) > 0 implies that there is a newly arrived task
km(t′) in time slot t′. Specifically, set T̃m,t contains a time
slot t′ ∈ {1, 2, . . . , t} if task km(t′) has been processed or
dropped in time slot t. Hence, at the beginning of time slot
t+1, mobile device m can observe a set of costs {cm(t′), t′ ∈
T̃m,t}, where set T̃m,t can be an empty set for some m ∈ M
and t ∈ T . Then, for each task km(t′) with t′ ∈ T̃m,t, device
m sends its experience (sm(t′),am(t′), cm(t′), sm(t′ + 1))
to edge node nm. Note that when device m transmits state
information sm(t′) and sm(t′ + 1), it does not need to send
the load level history H(t′) and H(t′ + 1). This is because
the number of active queues at the edge nodes in each time
slot has been sent by broadcast. Thus, each edge node knows
the load level history at all edge nodes during the past time
slots.6 In this case, when an edge node receives experience
(sm(t′),am(t′), cm(t′), sm(t′+ 1)), it can includeH(t′) and
H(t′ + 1) to the experience for training.

4.2.2 Algorithm 2 at Edge Node n ∈ N
After initializing the replay memory Dm as well as the
neural networks Netm and Target Netm for device m ∈Mn,
edge node n ∈ N will wait for the request messages from

6. As we focus on addressing the load level dynamics at the edge
nodes, we consider a scenario where the edge nodes are located in
neighboring areas. We assume that any two edge nodes are within one
hop from each other. In the scenario where this assumption does not
hold, an edge node can send the number of active queues to other edge
nodes through backhaul links.
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the mobile devices in set Mn. If edge node n receives a
parameter request from mobile device m ∈ Mn, then it
will send the current parameter vector θm of Netm to device
m. On the other hand, if edge node n receives an expe-
rience (sm(t),am(t), cm(t), sm(t + 1)) from mobile device
m ∈ Mn, then it will store the experience in memory Dm.
The reply of the parameter vector (steps 5-7 in Algorithm
2) and the training of the network (steps 8-21 in Algorithm
2) can be operated in parallel. That is, when an edge node
receives the parameter request from mobile device m, it
will immediately send the current vector θm to the device
regardless of whether there is training in progress or not.

The edge node will train the neural network (in steps
10−20 in Algorithm 2) to update the parameter vector θm
of Netm as follows. The edge node will randomly sample
a set of experiences from the memory (in step 10), denoted
by I . Let |I| denote the number of experiences in set I .7

Based on these experience samples, the key idea of the
update of Netm is to minimize the difference between the Q-
values under Netm and the target Q-values computed based
on the experience samples under Target Netm. Specifically,
for the experience samples in set I , the edge node will
compute Q̂

Target
m = (Q̂

Target
m,i , i ∈ I) and update θm in Netm

by minimizing the following loss function:

L(θm, Q̂
Target
m ) =

1

|I|
∑
i∈I

(
Qm(sm(i),am(i);θm)−Q̂Target

m,i

)2

.

(24)
Loss function (24) characterizes the gap between the Q-
value of action am(i) given state sm(i) under the current
network parameter vector θm and a target Q-value Q̂Target

m,i

for each experience i ∈ I (to be explained in the next
paragraph). The minimization of the loss function is ac-
complished by performing backpropagation (see Section 6
in [27]) on the neural network using iterative optimization
algorithms such as gradient descent algorithm.

The target Q-value Q̂Target
m,i for experience i ∈ I is de-

termined based on double-DQN technique [28], which can
improve the estimation of the expected long-term cost when
compared with the traditional method (e.g., [17]). To derive
this target Q-value, let aNext

i denote the action with the
minimum Q-value given state sm(i+ 1) under Netm, i.e.,

aNext
i = arg min

a∈A
Qm(sm(i+ 1),a;θm). (25)

The value of Q̂Target
m,i for experience i is derived as follows:

Q̂
Target
m,i = cm(i) + γQm(sm(i+ 1),aNext

i ;θ−m). (26)

Intuitively, target-Q value Q̂Target
m,i reveals the expected long-

term cost of action am(i) given state sm(i), i.e., the sum
of the cost in experience i and a discounted Q-value of the
action that is likely to be selected given the next state in
experience i under network Target Netm.

Let Replace Threshold denote the number of training
rounds after which Target Netm has to be updated. That is,
for every Replace Threshold training rounds, Target Netm
has to be updated by copying the parameter vector of

7. When all other factors are fixed, a smaller batch size (i.e., the
number of experiences sampled in each round) incurs a shorter time
for one round of training.

TABLE 1: Parameter settings

Parameter Value
∆ 0.1 second
fdevice
m ,m ∈M 2.5 GHz [15]
f

edge
n , n ∈ N 41.8 GHz [15]
rtran
m,n,m ∈M, n ∈ N 14 Mbps [30]
λm(t),m ∈M, t ∈ T {2.0, 2.1, . . . , 5.0}Mbits [4]
ρm,m ∈M 0.297 gigacycles per Mbits [4]
τm,m ∈M 10 time slots (i.e., 1 second)
Task arrival probability 0.3

Netm, where mod(·) is the modulo operator (in step 18
in Algorithm 2). The objective of this step is to keep the
network parameter θ−m in Target Netm up-to-date, so that it
can better approximate the expected long-term cost in the
computing of the target Q-values in (26).

4.2.3 Computational Complexity and Convergence
To determine the computational complexity, let L denote the
number of multiplication operations in the neural network.
The computational complexity of backpropagation for the
training of one experience is O(L). Recall that |I| is the
number of experiences sampled in each round of training.
Let K denote the expected number of tasks in each episode.
Since there are E episodes, the computational complexity of
the proposed algorithm is O(LKE|I|).

Regarding the convergence, as mentioned in many exist-
ing works (e.g., [29]), the convergence guarantee of a DRL-
algorithm is still an open problem. Despite the fact that the
convergence of a reinforcement learning algorithm can be
proven, a DRL algorithm requires function approximation
(e.g., the approximation of the Q-values in deep Q-learning
algorithm) using neural networks, under which the con-
vergence may no longer be guaranteed. In this work, we
empirically evaluate the convergence performance of the
proposed algorithm in Section 5.1.

5 PERFORMANCE EVALUATION

We consider a scenario with 50 mobile devices and five edge
node. The parameter setting are given in Table 1. The neural
network settings are as follows. The batch size is set to 16.
The learning rate is equal to 0.001, and the discount factor is
equal to 0.9. The probability of random exploration is gradu-
ally decreasing from 1 to 0.01. Meanwhile, we use RMSProp
optimizer. In these simulations, we focus on a scenario with
stationary environment, i.e., the transition function (from
the state and action to the next state) and the cost function
(from the state and action to cost) do not vary across time.
Under a non-stationary environment, if the environment has
changed, then the proposed algorithm can adapt to it by
resetting the probability of random exploration to be one so
as to enable the random exploration again.

5.1 Performance and Convergence
The neural network in the proposed algorithm is trained
online, where the real-time collected experience is used to
train the neural network and update the task offloading
decision. We evaluate the convergence of the proposed
algorithm under different neural network hyperparameters
and algorithm settings. We consider 1000 episodes, where
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Fig. 4: Convergence of the proposed algorithm under different: (a)
learning rate; (b) batch size; (c) optimizer; (d) the frequency that a
mobile device sends a parameter request.

each episode has 100 time slots. The simulation results are
shown in Fig. 4. In the subfigures, the x-axis shows the
episode, and the y-axis shows the average cost among the
mobile devices and the time slots in each episode. We plot
the performance of the proposed algorithm under different
settings and the random policy (denoted by “Rand.”), where
the actions are randomly selected.

Fig. 4 (a) shows the convergence of the proposed algo-
rithm under different values of learning rate (denoted “lr”),
where the learning rate is the step size in each iteration for
moving towards the minimum of the loss function. In Fig.
4 (a), lr = 10−3 leads to a relatively fast convergence and
small converged cost. When the learning rate is small (i.e.,
10−4), the convergence is slow. When the learning rate is
large (i.e., 10−2, 10−1), the converged cost increases, which
may be even higher than that of the random policy.

Fig. 4 (b) shows the algorithm performance under differ-
ent batch sizes, i.e., the number of experiences sampled in
each training round. As the batch size increases from 2 to 8,
the convergence speed increases. As it further increases from
8 to 32, the performance of the proposed algorithm does not
have a significant improvement in terms of the convergence
speed and the converged result. Thus, we can choose a
small batch size (e.g., 8) to reduce the time for one round
of training without significantly reducing the performance
of the proposed algorithm.

Fig. 4 (c) shows the algorithm performance under dif-
ferent optimizers, including gradient descent (denoted by
“GD”), RMSProp, and adaptive moment estimation (Adam)
optimizers. These optimizers provide different approaches
to update the neural network for minimizing the loss func-
tion in (24). As shown in Fig. 4 (c), RMSProp and Adam
optimizers lead to similar convergence speed and result.

In Fig. 4 (d), we consider a setting where a mobile device
sends the parameter request to update its network param-
eter every fixed number of time slots (instead of every time
slot when the mobile device has a task arrival). As shown
in the figure, sending the request every 100 time slots does

0.1 0.3 0.5 0.7 0.9
Task Arrival Probability

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f D
ro

pp
ed

 T
as

ks

No Offl.
R. Offl.
PGOA
ULOOF
DRL

0.1 0.3 0.5 0.7 0.9
Task Arrival Probability

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e 

D
el

ay
 (S

ec
)

No Offl.
R. Offl.
PGOA
ULOOF
DRL

(a) (b)

Fig. 5: Performance evaluation under different task arrival probabilities:
(a) ratio of dropped tasks; (b) average delay.

not have much impact on the algorithm performance when
compared with sending it every time slot. This is because the
training of the neural network in the proposed algorithm is
based on randomly sampled experiences from experience
replay rather than newly obtained experience. Hence, the
algorithm can tolerate a certain degree of delay in terms of
the update of the neural network for action selection. As a
result, in order to reduce the communication overhead, we
can reduce the frequency that the parameter request is sent
without significantly affecting the algorithm performance.

5.2 Method Comparison
We compare our proposed DRL-based method with several
benchmark methods, including no offloading (denoted by
No Offl.), random offloading (denoted by R. Offl.), PGOA
in [14], and ULOOF in [15]. The PGOA is designed based
on the best response algorithm for the potential game,
which considers the strategic interaction among mobile
devices.8 The ULOOF is designed based on the capacity
estimation according to historical observations. We choose
PGOA [14] and ULOOF [15] for comparison because similar
to our work, those schemes considered non-divisible tasks
and multiple edge nodes, and they did not consider the
involvement of any centralized entity. We consider two
performance metrics: the ratio of dropped tasks (i.e., the
ratio of the number of dropped tasks to the number of total
task arrivals) and the average delay (i.e., the average delay
of the tasks which have been processed).

In Fig. 5 (a), as the task arrival probability increases,
the proposed DRL-based algorithm can always maintain
a lower ratio of dropped tasks when compared with the
benchmark methods. When the task arrival probability is
small (i.e., 0.1), most of the methods can achieve a ratio of
dropped tasks of around zero. As the task arrival probability
increases from 0.1 to 0.5, the ratio of dropped tasks of
the proposed algorithm remains less than 0.2, while those
of the benchmark methods increase to more than 0.5. In
Fig. 5 (b), as the task arrival probability increases from
0.1 to 0.4, the average delay of our proposed DRL-based
algorithm increases by 26.1%, while those of the benchmark
methods increase by at least 34.5%. This implies that as

8. PGOA operates under the assumption that the processing of each
task can be finished within each time slot. Hence, the offloading
decision of each task can be made based on the feedback (e.g., delay)
of the tasks arrived in the previous time slots. In our work, we do not
impose this assumption. To evaluate the performance, we consider the
offloading decision of each task is made based on the feedback of the
tasks that have been processed in the previous time slots.
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Fig. 6: Performance under different task deadlines: (a) ratio of dropped
tasks; (b) average delay.
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Fig. 7: Performance under different number of mobile devices: (a) ratio
of dropped tasks; (b) average delay.

the load of the system increases, the average delay of the
proposed algorithm increases less dramatically than those
of the benchmark methods. As the task arrival probability
increases to 0.6, the average delay of some of the meth-
ods decrease, because an increasing number of tasks are
dropped and hence are not accounted in the average delay.
For the same reason, when the load of the system is high, the
proposed algorithm may have a larger average delay than
the other methods, as it has less tasks dropped.

As shown in Fig. 6 (a), the proposed algorithm always
achieves a lower ratio of dropped tasks than the benchmark
methods, especially when the deadline is small. When the
task deadline is 0.6 second, the proposed algorithm reduces
the ratio of dropped tasks by 65.8% − 79.3% when com-
pared with the benchmark methods. In Fig. 6 (b), as the
task deadline increases, the average delay of each method
increases and gradually converges. This is because when
the deadline is larger, the tasks requiring longer processing
(and transmission) time can be processed and are accounted
in the average delay. When the deadline is large enough, no
task is dropped, so further increasing the deadline makes
no difference. As shown in Fig. 6 (b), the average delay of
the proposed algorithm converges (i.e., achieves a marginal
increase of less than 0.05) after the deadline increases to 1.4
seconds, and the converged average delay is around 0.54
second. In comparison, the converged average delay of the
other methods are larger than 0.84 second.

In Fig. 7 (a), the proposed algorithm achieves a lower
ratio of dropped tasks than the other methods, especially
when the number of devices is large. This is because the
proposed algorithm can effectively address the unknown
load dynamics at the edge nodes. When the number of
mobile devices increases to 80, the proposed algorithm
maintains a ratio of dropped tasks of less than 0.05. In Fig. 7
(b), as the number of mobile devices increases, the average

delay of each method (except no offloading) increases due to
the potentially increasing load at the edge nodes. Since the
proposed algorithm can effectively deal with the unknown
edge load dynamics, when the number of mobile devices
increases to 150, it achieves an average delay of 9.0% lower
than those of PGOA and ULOOF.

6 CONCLUSION

In this work, we studied the computational task offloading
problem with non-divisible and delay-sensitive tasks in the
MEC system. We designed a distributed offloading algo-
rithm that enables mobile devices to make their offloading
decisions in a decentralized manner, which can address the
unknown load level dynamics at the edge nodes. Simulation
results showed that when compared with several bench-
mark methods, our proposed algorithm can reduce the ratio
of dropped tasks and average delay. The benefit is especially
significant when the tasks are delay-sensitive or the load
levels at the edge nodes are high.

There are several directions to extend this work. First,
it is interesting to extend the simplified wireless network
model to incorporate the transmission error and the in-
terference among mobile devices. Second, the algorithm
performance can be evaluated in a demo system, under
which many practical issues (e.g., real computational tasks)
should be addressed. Third, the computational complexity
of the proposed algorithm can be reduced. This can be
achieved by incorporating deep compression [31] to reduce
the number of multiplication operations in the neural net-
work and incorporating transfer learning [32] to accelerate
the convergence. In addition, as we let edge nodes help mo-
bile devices to train the neural networks, the communication
overhead and scalability issue due to the neural network
parameter transmission may be a concern when the neural
network is large. To extend this work, deep compression
[31] can be applied to reduce the number of weights of the
neural network and the number of bits required to represent
each weight. Furthermore, to enhance the performance of
the proposed algorithm under non-stationary environment,
it is interesting to incorporate techniques such as the re-
inforcement learning for non-stationary environment (e.g.,
[33]) and lifelong reinforcement learning [34]. Last but not
least, game-theoretic and multi-agent reinforcement learn-
ing techniques can be applied to further understand the
strategic interactions among mobile devices. Those tech-
niques can be incorporated into the proposed algorithm to
further address the load level dynamics at the edge nodes.
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