
2444 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 11, NOVEMBER 2018

Enabling Edge Cooperation in Tactile
Internet via 3C Resource Sharing

Ming Tang, Student Member, IEEE, Lin Gao , Senior Member, IEEE, and Jianwei Huang, Fellow, IEEE

Abstract— Tactile Internet often requires: 1) the ultra-reliable
and ultra-responsive network connection and 2) the proactive
and intelligent actuation at edge devices. A promising approach
to address these requirements is to enable mobile edge devices
to share their communication, computation, and caching (3C)
resources via device-to-device connections. In this paper, we pro-
pose a general 3C resource sharing framework, which includes
many existing 1C/2C sharing models in the literature as special
cases. Comparing with the 1C/2C models, the proposed 3C frame-
work can further improve the resource utilization efficiency by
offering more flexibilities in terms of the device cooperation
and resource scheduling. As a typical example, we focus on the
energy utilization under the proposed 3C framework. Specifically,
we formulate an energy consumption minimization problem,
which is an integer non-convex optimization problem. To solve
the problem, we first transform it into an equivalent integer
linear programming problem that is much easier to solve. Then,
we propose a heuristic algorithm based on linear programming,
which can further reduce the computation time and produce an
empirically close-to-optimal solution. Moreover, we evaluate the
energy reduction due to the 3C sharing both analytically and
numerically. Numerical results show that, comparing with the
existing 1C/2C approaches, the proposed 3C sharing framework
can reduce the total energy consumption by 83.8% when the D2D
energy is negligible. The energy reduction is still 27.5% when the
D2D transmission energy per unit time is twice as large as the
cellular transmission energy per unit time.

Index Terms— Tactile Internet, fog computing, D2D commu-
nication, edge resource sharing, resource optimization.

I. INTRODUCTION

A. Background and Motivation

W ITH the fast development of mobile communication
and information technologies, Tactile Internet [2] has

been recently proposed to support humans to control edge
devices (e.g., robots, smart-phones, and virtual/augmented
reality devices) remotely in real time. By enabling tactile
sensations, Tactile Internet can enrich the human-to-machine

Manuscript received April 16, 2018; revised September 16, 2018; accepted
September 21, 2018. Date of publication October 5, 2018; date of current
version November 30, 2018. This work was supported in part by the General
Research Funds established under the University Grant Committee of the
Hong Kong Special Administrative Region, China, under Project CUHK
14206315 and Project CUHK 14219016, and in part by the National Nat-
ural Science Foundation of China under Grant 61771162. This paper was
presented at the IEEE GLOBECOM [1]. (Corresponding authors: Lin Gao;
Jianwei Huang.)

M. Tang and J. Huang are with The Chinese University of Hong Kong,
Hong Kong (e-mail: tm014@ie.cuhk.edu.hk; jwhuang@ie.cuhk.edu.hk).

L. Gao is with the Department of Electronic and Information Engi-
neering, Harbin Institute of Technology, Shenzhen 518000, China (e-mail:
gaol@hit.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2018.2874123

interaction and revolutionize the interaction among edge
devices. Hence, Tactile Internet has attracted various appli-
cations such as automation industrial, real-time gaming, and
virtual/augmented reality.

Many applications of Tactile Internet have two main require-
ments [2]: (i) the ultra-reliable and ultra-responsive network
connection, and (ii) the proactive and intelligent actuation at
edges. To address these two requirements from the perspective
of mobile edge devices, a promising approach is to enable
device-to-device (D2D) based resource sharing among edge
devices, where the resources include communication, compu-
tation, and caching (3C) resources. Such a resource sharing can
be realized by D2D communication technologies [3], including
the ad hoc mode of the IEEE 802.11 standards, WiFi direct,
and Bluetooth. Some business instances also support such a
sharing, such as Open Garden (https://www.opengarden.com/).

For example, to improve the reliability of network connec-
tions, edge devices can share their communication resources
to better exploit the devices’ heterogeneous network capacities
to satisfy their quality-of-service (QoS) requirements. To pro-
mote the intelligent actuation, edge devices can also share their
computation and caching resources, so as to efficiently utilize
their resources to satisfy their intensive task requirements.

Many of the existing works focused on the sharing of one
type of the 3C resources [4]–[9], which we call 1C sharing
models. For example, the user-provided networking models
in [4] and [5] focus on the sharing of communication resource,
the ad hoc computation offloading models in [6] and [7]
focus on the sharing of computation resource, and the ad
hoc content sharing models in [8] and [9] focus on the
sharing of caching resource. Some other recent works further
considered the sharing of two types of the 3C resources, which
we call 2C sharing models. Typical examples of 2C sharing
include the distributed data analysis models in [10] and [11],
which focus on the sharing of computation and caching
resources.

Despite the success of the earlier 1C/2C resource shar-
ing models, there are still significant potential benefits of
exploiting the joint 3C resource sharing framework. Such
a 3C sharing framework can further improve the resource
utilization efficiency, by offering more flexibilities in terms
of device cooperation and resource scheduling. Regarding the
device cooperation, a joint 3C framework can enable devices
performing different tasks to cooperate with each other, which
leads to an increased number of participating devices and
hence more cooperation opportunities. Regarding the resource
scheduling, the joint optimization of 3C resources can lead to
a more efficient resource allocation.

0733-8716 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0142-1515

TANG et al.: ENABLING EDGE COOPERATION IN TACTILE INTERNET VIA 3C RESOURCE SHARING 2445

Fig. 1. An example of the general 3C framework.

B. Solution Approach and Contribution

In this paper, we present the first study regarding the general
3C resource sharing framework, which aims to generalize
existing edge device resource sharing (1C/2C) models and pro-
vide additional network design and optimization flexibilities.
A key feature of this new 3C sharing framework is that it is
centered around the characterization of the resource require-
ments of the tasks initialized by mobile devices, i.e., “resource-
centric”, instead of emphasizing on the classification of these
tasks, i.e., “task-centric”. In other words, any of the tasks
(e.g., content retrieving, data analysis, or uploading) is mod-
eled by the resources that it requests, so that various types of
tasks requesting some combinations of the 3C resources can
coexist in the same framework.

Figure 1 illustrates a simple example of the proposed
3C framework, where four devices {A, B, C, D} connect with
each other via D2D connections and share their 3C resources
to complete tasks. In this example, device D initializes a
task that involves the following procedures: (i) retrieving
contents “1” and “2” (either downloading from the Inter-
net or fetching from some devices’ caches), (ii) performing
computation, and (iii) outputting contents “3” (to the Internet)
and “4” (to device D’s local cache). With the 3C framework,
devices can share their communication (downlink and uplink),
computation (CPU), and caching resources. In this example,
devices A and B are responsible for obtaining the inputting
contents and delivering them to device C for computation, then
device C performs the computation and sends the outputting
contents to device D, and finally device D further uploads
content “3” and caches content “4” in its local cache.

To show the benefits of the 3C framework concretely,
we focus on the energy consumption of mobile edge devices,
and solve an energy consumption minimization problem under
the 3C framework. Note that the proposed methodology
can also be applied to other system optimization objectives
(e.g., delay minimization or QoS maximization). A common
feature of these optimization problems under the 3C frame-
work is the introduction of integer variables due to the pro-
posed content-based framework (i.e, specifying the requested
contents). The existence of the integer variables introduces
difficulties in analyzing and solving the proposed problem.
Moreover, tasks are often correlated with each other (e.g., due
to the delays generated by the resource sharing), which further

complicates the problem solving. We solve the energy mini-
mization problem systematically and discuss the energy reduc-
tion due to the 3C sharing both analytically and numerically.
Our key contributions are summarized as follows:

• General 3C Resource Sharing Framework: We propose
a general 3C sharing framework and the corresponding
“resource-centric” mathematical formulation. This frame-
work generalizes many existing 1C/2C resource sharing
models, and improves the resource utilization efficiency
by encouraging more devices participating and more
flexible resource scheduling.

• Energy Efficiency Optimization: We focus on the energy
consumption of mobile edge devices under the 3C frame-
work, and formulate and solve an energy consumption
minimization problem. The problem is difficult as it is
an integer non-convex optimization problem. We first
transform it to an integer linear programming (ILP)
problem, and then proposed a linear programming (LP)
heuristic algorithm, whose output is empirically close to
the optimal solution.

• Theoretical Performance Analysis: We analyze the energy
consumption reduction due to the 3C resource sharing
analytically. We show that if the 3C framework can
double the number of cooperative devices (comparing
with 1C models), it can reduce the energy by a maximum
of about 20% of the energy consumed in noncooperation
case (where devices do not cooperate).

• Simulation and Performance Evaluation: Comparing with
existing 1C/2C sharing approaches, 3C sharing reduces
the total energy by 83.8% when the D2D energy con-
sumption is negligible, and the energy reduction is
still 27.5% when the D2D energy per unit time is twice
as large as the cellular energy per unit time.

The rest of this paper is organized as follows. Section II
reviews the related work, and Section III presents the 3C
framework. In Section IV, we present the energy minimiza-
tion problem transformation and heuristic algorithm design.
We analyze the energy reduction due to the 3C framework
theoretically and numerically in Section V and Section VI,
respectively. We conclude in Section VII.

II. LITERATURE REVIEW

There are extensive studies working on the 1C/2C sharing
models. Due to the limited space, we only briefly discuss some
representative works that are most closely related to this study.

Most of the existing works considered 1C models. For
example, Iosifidis et al. [4] and Syrivelis et al. [5] proposed
user-provided network models for communication resource
sharing, where nearby devices share their Internet connec-
tivity for cooperative downloading. Militano et al. [12] pro-
posed an uploading resource sharing model, where devices
form effective coalitions to share their uploading resources.
Chen et al. [6] and Chi et al. [7] proposed ad hoc computation
offloading models for computation resource sharing, where
nearby mobile devices share their computation resources for
data processing. Jiang et al. [8] and Chen et al. [9] proposed ad
hoc content sharing models for cached content sharing, where
devices share their cached contents through D2D connections.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:28 UTC from IEEE Xplore. Restrictions apply.

2446 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 11, NOVEMBER 2018

Some recent works further considered 2C models. For
example, Stojmenovic and Wen [10] and Destounis, et al. [11]
considered distributed data analysis models, where some
mobile devices share their cached data and other devices share
their computation resources to process the shared data.

There are two limitations of the existing 1C/2C models:
i) due to commonly adopted “task-centric” approach, devices
with different types of tasks cannot cooperate (e.g., devices
in user-provided network cannot cooperate with devices in
ad hoc computation offloading), which restricts the pool of
cooperative devices; and (ii) some tasks may request all of
the 3C resources, which cannot be handled by these existing
1C/2C models. In comparison, our proposed 3C framework
addresses the above two limitations and improve resource
utilization efficiency by providing more device cooperation
and resource scheduling flexibilities.

III. A GENERAL 3C SHARING FRAMEWORK

A. System Model

We consider three key elements in the 3C framework:
devices, tasks, and contents.

• Device set N = {1, 2, ..., N}: The devices form a mesh
network (through D2D connections) for cooperative task
execution. For any device n ∈ N , let E(n) denote the
set of devices connected with device n through D2D
connections. Note that n ∈ E(n).

• Task set S = {1, 2, ..., S}: The devices initialize these
tasks, where a device may initialize one or more tasks.

• Content set K = {1, 2, ..., K}: The contents can be the
inputting or outputting of the tasks. A content k ∈ K has
a size of Lk (in bits).

Next we provide detailed explanations of devices and tasks.
1) Device Model: A device is characterized as follows,

where the corresponding parameters are constants in a par-
ticular resource scheduling operation.1

Definition 1 (Device Model): Each device n ∈ N corre-
sponds to a collection of tasks and resources, denoted by

Qn = (sn, Qdown
n , Qcpu

n , Qup
n , Qca

n), (1)

where each notation refers to a feature of the device:

sn - the vector of its initializing tasks’ indexes, where
the dimension is the number of tasks it initializes,

Qdown
n - downloading capacity (in bits per second),

Qcpu
n - computation capacity (in CPU cycles per second),

Qup
n - uploading capacity (in bits per second),

Qca
n - the vector of cached contents of dimension K ,

where for any content k ∈ K, Qca
nk = 1 if n has

cached content k, and Qca
nk = 0 otherwise.

Let cdown
n , ccpu

n , and cup
n denote the energy consumption of

the downloading, computation, and uploading operations per
unit second, respectively.

Next we define the model of the D2D connections.

1If the actual time for task execution is long, such constant capacities can be
regarded as the average capacities over a relative long time period; if the actual
time for task execution is short, such constant capacities can be regarded as
the real-time capacities, which can be approximated as constants.

Fig. 2. The task model.

Definition 2 (Device-to-Device Model): For any two differ-
ent devices n, m ∈ N , let Qd2d

n→m denote the D2D transmission
capacity (bits per second) from device n to device m, and let
cd2d
n→m denote the D2D transmission energy per second.

2) Task Model: Each task s ∈ S is represented by the
task model shown in Figure 2. Specifically, each task has
a computation module (which can have a zero computation
requirement if the task does not involve any computation).
The computation module requests some inputting contents,
which can be downloaded from the Internet or fetched from
devices’ caches. The computation module then produces some
outputting contents, which can be uploaded to the Inter-
net or cached at the task owner’s device.

Definition 3 (Task Model): Each task s ∈ S is denoted by

Ds = (us, D
in
s , Dcpu

s , Dup
s , Dca

s), (2)

where each notation refers to a feature of the task:

us - task owner (i.e., the device initializes this task),
Din

s - the vector of the inputting contents,
Dcpu

s - computation requirement (in total CPU cycles),
Dup

s - the vector of the uploading contents,
Dca

s - the vector of the caching contents.

All three Din
s , Dup

s , and Dca
s have the same size of K . For

any k ∈ K, DX
sk = 1 (X ∈ in, up, ca) if content k is requested

by task s for inputting, uploading, or caching, respectively, and
DX

sk = 0 otherwise.
Each task can be divided into several subtasks:
Definition 4 (Subtask): Each task consists of three sub-

tasks: inputting, computation, and uploading2 subtasks.
Our proposed task model is content-based (i.e., specifying

the requested contents) instead of data-based (i.e., only speci-
fying the amount data needed). The content-based formulation
makes the framework more flexible, as it does not limit where
to obtain the requested contents. As a result, our task model
can be used for modeling various applications whose tasks can
be broken down to input contents, computation, and output
contents (or a subset of these three types of subtasks). This
is achieved by properly specifying the parameters in the task
model, where the details are in Section III-C.

B. Problem Statement

To demonstrate the proposed 3C framework, we focus
on an energy minimization problem, as mobile devices
always concern about their energy consumption. Our math-
ematical formulation is also applicable to other optimization
objectives.

We first introduce decision variables, constraints, and energy
calculations. We then show the energy minimization problem.

2The contents to be cached, i.e., Dca, are cached at the task owner, so we
do not regard it as a separate subtask.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:28 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: ENABLING EDGE COOPERATION IN TACTILE INTERNET VIA 3C RESOURCE SHARING 2447

1) Decision Variables: We consider a set of binary deci-
sion variables with possible values from {0, 1} as follows.
A variable equals 1 if its corresponding description is true,
and equals 0 otherwise.

xin
s,k→n - device n inputs task s’ content k,

xdown
s,k→n - device n downloads task s’ content k,

xcpu
s→n - device n performs task s’ computation,

xup
s,k→n - device n uploads task s’ content k,

zin
s,k→i,j - task s’ inputting content k is delivered from

i to j,
zup

s,k→i,j - task s’ uploading content k is delivered from
i to j,

zca
s,k→i,j - task s’ caching content k is delivered from i to j.

Here i and j refer to devices from set N .
2) Constraints: The system constraints are as follows.

a) Allocation constraints: Any task s’ computation sub-
task should be allocated to only one device:

∑

n∈N
xcpu

s→n = 1, ∀s ∈ S. (3)

The inputting of a requested content should be allocated to
one device, i.e.,

∑

n∈N
xin

s,k→n = Din
sk, ∀s ∈ S, k ∈ K. (4)

The uploading of a requested content should be allocated to
one device, i.e.,

∑

n∈N
xup

s,k→n = Dup
sk , ∀s ∈ S, k ∈ K. (5)

b) Capacity constraints: The device that is responsible
for inputting a content should either has the content in its
local cache or will download it from the Internet:

xin
s,k→n ≤ Qca

nk +
∑

s∈S
xdown

s,k→n, ∀s ∈ S, n ∈ N , k ∈ K.

(6)

c) Network flow balancing constraints: These con-
straints are related to the content delivery through multi-
hop transmissions. For a content requested by a task, at any
device, the incoming number of times that the device
receives/generates the content should be the same as the num-
ber of times that the device transmits/consumes the content.

Taking the inputting content transmission variable zin
s,k→i,j

as an example. For any task s ∈ S and content k ∈ K,
the network flow balancing constraint at a device i ∈ N is

∑

j∈E(i)

zin
s,k→j,i + xin

s,k→iD
in
sk =

∑

j∈E(i)

zin
s,k→i,j + xcpu

s→iD
in
sk.

(7)

The left-hand side of (7) is the incoming number of times
of task s’ inputting content k, including the number of times
that device i receives from its nearby devices and the number
of times it generates for inputting (which equals one if
xin

s,k→i = 1 and Din
sk = 1). The right-hand side of (7) is

the outgoing number of times of task s’ inputting content k,
including the number of times that device i transmits to

its nearby devices and the number of times it consumes
to perform computation (which equals one if xcpu

s→i = 1
and Din

sk = 1).
Applying similar arguments to caching and uploading,

we obtain the following constraints:
∑

j∈E(i)

zca
s,k→j,i + xcpu

s→iD
ca
sk =

∑

j∈E(i)

zca
s,k→i,j + 1i=usD

ca
sk,

(8)∑

j∈E(i)

zup
s,k→j,i + xcpu

s→iD
up
sk =

∑

j∈E(i)

zup
s,k→i,j + xup

s,k→iD
up
sk .

(9)

Operator 1i=us = 1 if i = us, and 1i=us = 0 if i �= us.
d) Worst case delay constraints: The worst case delay

is the maximum delay that may happen due to the resource
sharing. We first explain the worst case delay constraints, and
then compute the worst delays.

First, to execute a task s, the worst delay of downloading,3

computation, and uploading subtasks, denoted by T X
s (X ∈

{down, cpu, up}), should be smaller than the corresponding
delay bounds, respectively:

T down
s ≤ T̄ down

s , T cpu
s ≤ T̄ cpu

s , T up
s ≤ T̄ up

s , ∀s ∈ S. (10)

By using these separate delay constraints, we want to charac-
terize the delay of each of the subtasks of a task. In addition,
we ignore the D2D transmission delay for simplification.4

Then, we show how to calculate the worst case delays
(T down

s , T cpu
s , and T up

s). The first step is to calculate a device’s
time spending on completing all the subtasks allocated to it.
Specifically, let τdown

n , τcpu
n , and τup

n denote device n’s total
time spending on completing all the downloading, computa-
tion, and uploading subtasks allocated to it, respectively:

τdown
n =

∑S
s=1

∑K
k=1 xdown

s,k→nLk

Qdown
n

, (11)

τup
n =

∑S
s=1

∑K
k=1 xup

s,k→nLk

Qup
n

, τcpu
n =

∑S
s=1 xcpu

s→nDcpu
s

Qcpu
n

.

(12)

The second step is to calculate the worst case delays.
Using (11) as an example, we explain how to compute the
worst downloading delay T down

s . We will first discuss the
maximum downloading time that a device n can impose on
a task that it downloads for, and then discuss how a task s
(requesting downloading from multiple devices) computes its
worst downloading delay T down

s .
For any device n, it may download contents for multiple

tasks, and the multiple tasks may be ready for downloading at
different times.5 For simplicity, we assume that, if a device is

3Inputting contents may come from downloading from the Internet or fetch-
ing from caches. For simplicity, we assume that fetching from caches is
instantaneous, so we can focus on the delay caused by downloading.

4In reality, such a delay is usually relatively small (e.g., Wi-Fi Direct has
a transmission speed of up to 250Mbps [13]).

5The case of different ready times is more obvious for computation and
uploading subtasks. Specifically, the computation of a task is ready for
execution only when the corresponding downloading has finished, and this
time could be different for different tasks. Similar for uploading subtasks.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:28 UTC from IEEE Xplore. Restrictions apply.

2448 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 11, NOVEMBER 2018

downloading for multiple tasks at the same time, the device
divides its total downloading capacity among the multiple
tasks according to their total downloading volumes.6 For
example, a device n is downloading two contents (with sizes
1Mb and 2Mb, respectively) for task A, and one content
(with a size 6Mb) for task B. Then, the device n allocates
(1 + 2)/(1 + 2 + 6) = 1/3 and 6/(1 + 2 + 6) = 2/3 of its
downloading capacity to task A and task B, respectively. Under
this, the maximum downloading time that device n can impose
on a task is its total time spending on downloading, i.e., τdown

n .
This happens when all the tasks (allocated to device n) is ready
for downloading at the same time, under which these tasks will
share the device n’s capacity during the entire downloading
process.

For any task s, it can obtain multiple contents from different
devices. The worst downloading delay that task s experiences
is the maximum downloading time τdown

n among the device
set {n|∑K

k=1 xin
s,k→n(1−Qca

nk) > 0}. This set refers to the set
of devices that are responsible for task s’ inputting but have
not cached the contents yet. Formally,

T down
s = max

{n|�K
k=1 xin

s,k→n(1−Qca
nk)>0}

τdown
n . (13)

A similar idea applies to the calculation of the worst
computation and uploading delays. Specifically, the worst
computation delay is the computation time of the device who
performs task s’ computation:

T cpu
s =

N∑

n=1

xcpu
s→nτcpu

n . (14)

The worst uploading delay is the maximum uploading time
τup
n among all the devices who perform task s’ uploading:

T up
s = max

{n|�K
k=1 xup

s,k→n>0}
τup
n . (15)

To clarify, these delay constraints are non-convex, since
they contain quadratic forms that are not positive semidefinite,
which makes it difficult to solve the energy minimization
problem (to be presented in Section III-B.4).

3) Energy Calculations: The energy for executing a task s
consists of the energy for downloading, computation, upload-
ing, and D2D transmission. Formally,

Es = Edown
s + Ecpu

s + Eup
s + Ed2d

s . (16)

Each of these four terms is linear with the time that the devices
spend on executing the corresponding operations:

Edown
s =

N∑

n=1

cdown
n

∑K
k=1 xdown

s,k→nLk

Qdown
n

, (17)

Ecpu
s =

N∑

n=1

ccpu
n

xcpu
s→nDcpu

s

Qcpu
n

,

Eup
s =

N∑

n=1

cup
n

K∑
k=1

xup
s,k→nLk

Qup
n

, (18)

6We assume that when a subtask arrives at a device, it is executed without
queuing, and it shares the capacity of the device with the other subtasks.

TABLE I

EXISTING MODELS THAT THE 3C FRAMEWORK CAN GENERALIZE

Ed2d
s =

N∑

i=1

N∑

j=1

cd2d
i→j

×

K∑
k=1

(zin
s,k→i,j + zup

s,k→i,j + zca
s,k→i,j)Lk

Qd2d
i→j

. (19)

For example, task s’ downloading energy Edown
s is the sum of

the energy consumed by various devices for downloading for
task s, where each device’s downloading energy equals to the
product of its energy coefficient and the downloading time.

4) Problem Formulation: We minimize the energy con-
sumption of the 3C framework under the proposed constraints:

minimize
x,z∈{0,1}

∑

s∈S
Es

subject to (3) ∼ (10) (OPT)

Problem (OPT) is non-convex due to the delay constraints.
In Section IV, we transform it into an ILP problem, which
can be solved by standard optimizers. We further propose a
heuristic algorithm with a lower computational complexity.

C. Generalization of Existing Models in the Literature

By properly specifying the task model Ds, the proposed
3C framework can generalize many of the existing 1C and
2C models. Examples are illustrated in Table I. Among these
models, the notation Ddata

s (in (a), (b), and (c)) denotes the
contents that are requested by the corresponding operations.

IV. ENERGY MINIMIZATION WITH 3C SHARING

In this section, we focus on the energy minimization
problem (OPT), which is an integer non-convex optimization
problem. To solve this problem, we first transform it into an
ILP problem, which can be solved by standard optimizers.
However, an ILP problem is an NP-complete problem [14].
Hence, we further propose a heuristic algorithm that solves a
series of problems, each of which is a LP relaxation (relaxing
integer variables to continuous ones) of the original problem
(OPT). To clarify, the solutions in this section are based on a
centralized scheduling, i.e., a centralized entity is needed for
information collection and signaling.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:28 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: ENABLING EDGE COOPERATION IN TACTILE INTERNET VIA 3C RESOURCE SHARING 2449

A. Linear Transformation of Problem (OPT)

We first transform the integer non-convex problem (OPT)
to an ILP problem. Since the non-convexity is mainly due to
the delay constraints, the key focus will be how to transform
the delay constraints to linear ones.

The key transforming idea is as follows. Consider a con-
straint in the form of τ×y ≤ T̄ , where the continuous variable
τ ≥ 0, the discrete variable y ∈ {0, 1}, and the fixed parameter
T̄ ≥ 0. We can transform the constraint into an equivalent
linear form τ − (1 − y) ×M ≤ T̄ , where M is any number
that satisfies τ −M ≤ 0. To see the equivalence of the two
constraints, we consider two possible values of y. If y = 1,
both the original and the transformed constraints are τ ≤ T̄ ;
if y = 0, both constraints are true for any value of τ . Hence,
the two constraints are equivalent.

Next we use this key idea to explain the transformation of
downloading delay constraints. The transformations of com-
putation and uploading delay constraints are similar. Finally,
we present the transformed problem.

1) Transforming Downloading Delay Constraints: We will
transform the delay constraint T down

s ≤ T̄ down
s in (10) to a

linear one. Specifically, this constraint can be written as

τdown
n ydown

s→n ≤ T̄ down
s , ∀s ∈ S, n ∈ N , (20)

where τdown
n is a linear function of variables xdown

s,k→n as in
(11). The variable ydown

s→n ∈ {0, 1} indicates whether a task s’
downloading is being allocated to device n, i.e.,

ydown
s→n ≤ min{

K∑

k=1

xin
s,k→n(1−Qca

nk), 1}, (21)

ydown
s→n ≥ xin

s,k→n(1−Qca
nk), ∀k ∈ K. (22)

Specifically, when xin
s,k→n(1 − Qca

nk) = 0 for all k (i.e.,
device n does not download any content for task s), we have
ydown

s→n = 0; otherwise, when there exists a k such that
xin

s,k→n(1 −Qca
nk) = 1 (i.e., device n downloads contents for

task s), we have ydown
s→n = 1.

Then, we transform constraints (20) based on the previously
mentioned transforming idea. The constraint is given by

τdown
n − (1− ydown

s→n)Mdown
n ≤ T̄ down

s , ∀s ∈ S, n ∈ N ,

(23)

where Mdown
n satisfies τdown

n −Mdown
n ≤ 0.7

2) Transforming Computation and Uploading Delay Con-
straints: Based on similar ideas, the equivalent computation
delay constraint is given by

τcpu
n − (1 − xcpu

s→n)M cpu
n ≤ T̄ cpu

s , ∀s ∈ S, n ∈ N , (24)

where M cpu
n satisfies τcpu

n − M cpu
n ≤ 0. The equivalent

uploading delay constraint is given by

τup
n − (1− yup

s→n)Mup
n ≤ T̄ up

s , ∀s ∈ S, n ∈ N , (25)

7Note that τdown
n is a linear function of variables xdown

s,k→n, which are
unknown before solving the optimization problem. To ensure the inequality
τdown
n − Mdown

n ≤ 0 holds, we can set Mdown
n = max{T̄ down

s ,∀s},
∀n ∈ N . Similar ideas apply for the computation and uploading constraints.

where Mup
n satisfies τup

n − Mup
n ≤ 0, and ycpu

s→n denotes
whether device n uploads for task s, i.e.,

yup
s→n ≤ min

{
K∑

k=1

xup
s,k→n, 1

}
,

yup
s→n ≥ xup

s,k→n, ∀k ∈ K. (26)

3) The Linear Transformation of Problem (OPT): Once
replacing the delay constraint (10) with (21)∼(26), we trans-
form Problem (OPT) into the following equivalent problem:

minimize
x,z,y∈{0,1}

∑

s∈S
Es

subject to (3) ∼ (9), (21) ∼ (26) (OPT-LINEAR)

Problem (OPT-LINEAR) is an ILP, which can be solved by
standard optimizers, e.g., Gurobi (http://www.gurobi.com).

However, directly solving Problem (OPT-LINEAR) using
standard optimizers works well when the network size (e.g.,
the number of devices and tasks) is reasonably small. As
the system size increases, the computation time dramati-
cally increases, as Problem (OPT-LINEAR) (an ILP) is NP-
complete [14]. To address this complexity issue, we propose
a heuristic algorithm based on the original Problem (OPT).

B. A Heuristic Algorithm of Solving Problem (OPT)

The key idea is to iteratively solve a series of modified
versions of Problem (OPT), where we remove the delay
constraints and relax the integer variables to continuous ones
(i.e., LP relaxation [14], so that the modified problems are
LP problems). At the end of each iteration, the algorithm
will check whether the removed delay constraints are satisfied.
If not, the algorithm will prevent some tasks from being allo-
cated to certain devices (in order to address the violated delay
constraints), and solve a new version of modified problem. The
algorithm iterates until all the delay constraints are satisfied.

Next we first describe the modified problem, then we
propose the heuristic algorithm.

1) A Modified Problem of Problem (OPT): Comparing with
the original Problem (OPT), the modification involves remov-
ing delay constraints, relaxing integer variables, and adding
control parameters that can prevent certain tasks from being
allocated to certain devices. We first introduce the control
parameters, then propose the modified problem.

In order to prevent particular subtasks from being allocated
to certain devices, we introduce the following binary control
parameters Ñ in

s,k→n, Ñ cpu
s→n, and Ñup

s,k→n:

xin
s,k→n≤Ñ in

s,k→n, xcpu
s→n≤Ñ cpu

s→n, xup
s,k→n≤Ñup

s,k→n. (27)

Take Ñ in
s,k→n as an example: if it equals zero, then (27)

indicates that xin
s,k→n can only be zero, so the content k of task

s cannot be allocated to device n; if it equals one, then xin
s,k→n

can be either zero or one, so the allocation is not prevented.
The same idea applies to Ñ cpu

s→n and Ñup
s,k→n.

Then, we introduce the modified problem of Problem (OPT)
by removing delay constraints (10), relaxing integer variables

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:28 UTC from IEEE Xplore. Restrictions apply.

2450 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 11, NOVEMBER 2018

Algorithm 1 Heuristic Algorithm

1: Initialization: Ñ
in

, Ñ
cpu

, Ñ
up ← 1

2: x, z ←Solve Problem (OPT-RELAX) (e.g., using Simplex
method [15])

3: Calculate T down
s , T cpu

s , T up
s using (13), (14), (15)

4: while delay constraints (10) are not fully satisfied do
5: for each task s ∈ S do
6: if T down

s > T̄ down
s then

7: n̂← maxn{τdown
n ydown

s→n } � select a device
8: I ← {s| ∑

ŝ∈sn̂

∑
k

xin
ŝ,k→n̂xin

s,k→n̂ ≥ 1}
� find device n̂’s non-preventable task set

9: s̄← argmins{T̄ down
s |ydown

s→n̂ �= 0, s /∈ I}
� select a task s̄ that is preventable

10: K̄ ← {k|xin
s̄,k→n̂(1−Qca

n̂k) = 1}
� select contents

11: Ñ in
s,k→n̂ ← 0, ∀{s, k|xin

s,k→n̂ = 1, k ∈ K̄}
� prevent the allocations

12: end if
13: if T cpu

s > T̄ cpu
s then

14: n̂← maxn{τcpu
n ycpu

s→n} � select a device
15: s̄← arg mins{T̄ cpu

s |ycpu
s→n̂ �= 0, s /∈ sn̂}

� select a task
16: Ñ cpu

s̄→n̂ ← 0 � prevent the allocation
17: end if
18: if T up

s > T̄ up
s then

19: n̂← maxn{τup
n yup

s→n} � select a device
20: s̄← arg mins{T̄ up

s |yup
s→n̂ �= 0, s /∈ sn̂}

� select a task
21: Ñup

s̄,k→n̂ ← 0,∀k � prevent the allocations
22: end if
23: end for
24: x, z ←Solve Problem (OPT-RELAX) (e.g., using

Simplex method [15])
25: Calculate T down

s , T cpu
s , T up

s using (13), (14), (15)
26: end while
27: return x, z

(i.e., relaxing x, z ∈ {0, 1} to be x, z ∈ [0, 1]), and adding
control constraints (27):

minimize
x,z∈[0,1]

∑

s∈S
Es

subject to (3) ∼ (9), (27) (OPT-RELAX)

To clarify, there are many versions of Problem (OPT-RELAX),
each of which corresponds to a set of parameter
choices of Ñ in

s,k→n, Ñ cpu
s→n, and Ñup

s,k→n. Moreover,
Problem (OPT-RELAX) is an LP problem, which
can be solved using various methods such as Simplex
method [15].

2) A Heuristic Algorithm to Solve Problem (OPT): The
heuristic algorithm will iteratively solve multiple versions of
Problem (OPT-RELAX) as follows. At the beginning, no allo-
cation is prevented, i.e., Ñ in

s,k→n = Ñ cpu
s→n = Ñup

s,k→n = 1
for all s, k, and n. We first optimize the corresponding
Problem (OPT-RELAX), and check whether the optimal
solution satisfies the delay constraints in (10). If yes, then

the obtained optimal solution of Problem (OPT-RELAX)
is the optimal solution of Problem (OPT); if not, we need
to revise the control parameters in Problem (OPT-RELAX)
(i.e., setting some Ñ in

s,k→n, Ñ cpu
s→n, or Ñup

s,k→n to be zeros),
with details discussed in the next paragraph. We optimize
Problem (OPT-RELAX) iteratively until obtaining a solution
that satisfies the delay constraints in (10). The algorithm is
given in Algorithm 1.

We now discuss how the algorithm chooses the proper
version of Problem (OPT-RELAX) to solve by setting
Ñ in

s,k→n, Ñ cpu
s→n, or Ñup

s,k→n for inputting (in lines 6-12
of Algorithm 1),8 computation (in lines 13-17), and uploading
(in lines 18-22) subtasks, respectively. We first introduce the
general idea, then explain a special setting of the inputting
subtask.

The general idea of preventing some allocations for the
inputting, computation, and uploading subtasks is as follows.
For a particular subtask of a task s, if its corresponding delay
(after solving a version of Problem (OPT-RELAX)) is larger
than the delay bound, then the algorithm will (i) find the
device n̂ that induces the maximum delay, (ii) at device n̂, find
the task s̄ with the tightest delay bound among all the tasks
that are allocated to device n̂ (excluding device n̂’s tasks),
(iii) prevent task s̄ from being allocated to device n̂ by setting
the corresponding Ñ in

s,k→n, Ñ cpu
s→n, or Ñup

s,k→n to be zeros.
Next we discuss a special setting of the inputting (download-

ing) subtask. Specifically, device n̂ may download the same
content for both itself and other devices, but it should not
prevent the content downloading of its own tasks. So we define
a non-preventable set I (in line 8), which contains the tasks
that request a same content as device n̂ does. Only the tasks
outside the non-preventable set can be prevented (in line 9).
In addition, only the contents that have not be cached (have
to be downloaded) are prevented (in lines 10 and 11), because
cached contents do not induce delays.

3) Properties of Algorithm 1: We first make an assumption
that is often satisfied in practice, and then characterize several
properties of the proposed heuristic algorithm.

Assumption 1 (Feasible Noncooperation Case):
Noncooperation (i.e., each of the devices performs its tasks
on its own) is within the feasible region of Problem (OPT).

This assumption implies that each device is capable of
executing its tasks on its own. If Assumption 1 is violated,
some tasks may become infeasible to complete, as cooperation
is not always guaranteed in practice.

Under Assumption 1, Algorithm 1 is guaranteed to converge
and output an integer feasible solution of Problem (OPT).

Proposition 1 (Guarantee of Feasible Output):
Algorithm 1 is guaranteed to converge and produce an
integer solution that is within the feasible region of
Problem (OPT).

The proof is given in the online report [16]. Specifically,
to prove the convergence, we have to show that the noncooper-
ation solution will never be excluded from the feasible region
of Problem (OPT-RELAX), so the algorithm will definitely

8The inputting subtask prevention corresponds to downloading delays,
because the downloading is the operation inducing inputting delays.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:28 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: ENABLING EDGE COOPERATION IN TACTILE INTERNET VIA 3C RESOURCE SHARING 2451

converge when reaching the noncooperation solution (if it has
not converged earlier). To prove the integer feasible solution,
we have to prove that the optimal solution of any version of
Problem (OPT-RELAX) is always integer (as its matrix of
constraint coefficients is totally unimodular [17]) and within
the feasible region of Problem (OPT).

We now show the performance guarantee of Algorithm 1.
Proposition 2 (Performance Guarantee): The energy con-

sumption of the heuristic algorithm output is no larger than
that of the noncooperation case. When there is no delay con-
straint, the heuristic algorithm output is an optimal solution
of the original problem (OPT).

The proof is given in the online report [16]. We will further
evaluate the performance of this heuristic algorithm under the
settings with delay constraints in Section VI-A.

Regarding the complexity of Algorithm 1, its maximum
iteration time is as follows:

Proposition 3 (Maximum Iteration Time): The maximum
iteration time of this heuristic algorithm is S × (N − 1),
where S is the task number and N is device number.

The proof is given in the online report [16]. Recall that
Problem (OPT-LINEAR) is NP-complete, which cannot be
solved in polynomial time in general. In comparison, Propo-
sition 3 shows that the heuristic algorithm has a maximum of
S × (N − 1) iterations, each of which solves an LP problem
(OPT-RELAX) that is a P-complete problem. This implies that
the heuristic algorithm can terminate in polynomial time.

V. ENERGY REDUCTION DUE TO 3C SHARING

The proposed 3C framework is “resource-centric” instead
of “task-centric”, so that it provides additional flexibilities in
terms of device cooperation. More specifically, it promotes
cooperation opportunities through enabling devices performing
different tasks to cooperate. In this section, we study how
much a 3C framework can reduce the energy consumption
through a specific problem setting, comparing with 1C models.
We first introduce system settings, then discuss the energy
reduction due to the 3C framework.

A. System Settings

In order to derive the closed-form solutions of the energy
reduction, we consider specific device and task models as
follows. We consider a random graph model G(N, p) [18],
where there are N devices in the graph and every two devices
are connected randomly and independently with a probabil-
ity p. Suppose that the network is large and sparse, so that
N approaches infinite with Np being a constant [18]. These
devices initialize a set of tasks. Since we focus on the com-
parison between 1C models and 3C framework, we assume
that each task only needs one of the 3C resources.

The devices are heterogeneous in terms of their owned
resources. Specifically, each device n owns some resources
Qdown

n , Qcpu
n , and Qup

n . The capacities QX
n (X ∈

{down, cpu, up}) is independent and identically distributed
(i.i.d.) with the cumulative distribution function FX

Q (x) and the
probability density function fX

Q (x). The support of capacity

QX
n is (QX , Q

X
), hence FX

Q (QX) = 0 and FX
Q (Q

X
) = 1.

For the convenience of analysis, we assume that the energy
coefficients of the devices are homogeneous, i.e., cX

n =
cX , X ∈ {down, cpu, up}, ∀n. In addition, each device n
uniformly and randomly caches M ca contents in its cache, i.e.,∑K

k=1 Qca
nk = M ca for all n. For simplification, we assume

that all the contents have the same size that is normalized to
one, i.e., Lk = 1, for each k, similar as in existing caching
studies on performance analysis (e.g., [19]).

We aim to study the system under the general distribution
function, which is quite challenging to do. Hence, we further
make the following simplifying assumption for the rest of
Section V. A more realistic case (with these assumptions
relaxed) is evaluated empirically in Section VI.

Assumption 2: 1) The D2D transmission energy is relatively
small and can be ignored; 2) there is no delay constraint;
3) devices can only cooperate with their one-hop neighbors.

Under Assumption 2, for any device m, the optimal alloca-
tion of any of its tasks s ∈ sm is as follows. Regarding the
inputting subtask, for a content requested by task s, if any
device n ∈ E(m) has cached it, then the content will be
inputted from device n. If none of the devices in set E(m) has
cached it, then the device who has the highest downloading
capacity among set E(m) downloads the content. Regarding
the computation and uploading subtasks, they will be allocated
to the devices with the highest computation and uploading
capacities among the devices E(m), respectively.

B. Energy Reduction Due to the 3C Framework

In this subsection, we study how much a 3C framework
can reduce the energy consumption through providing more
cooperation opportunities. Since that each of the tasks only
requests one kinds of the 3C resources, we can analyze the
tasks requesting each of the 3C resources separately.

Next we will compute the energy reduction of the tasks
requesting each of the 3C resources one by one. We will
first discuss the tasks requesting communication/computation
resource (both of which are capacity-based resources), and
then discuss the tasks requesting caching resource.

1) Communication/Computation: In the following analysis,
we focus on the tasks requesting a particular resource (i.e.,
downloading, uploading, or computation). Hence, for presen-
tation simplicity, the term “resource” in Section V-B.1 only
refers to the particular resource, and we omit the correspond-
ing resource-specific super-scripts and sub-scripts. Without the
loss of generality, we normalize the energy coefficient of the
particular resource to be one, i.e., c = 1.

We will first formulate the expected energy consumption,
then introduce the analysis idea. In the random graph G(N, p),
suppose each device joins the cooperative system with a
probability α ∈ [0, 1]. Under these, each task requesting the
particular resource will have an expected energy consumption
denoted by W (α, Np).9 Under the 1C model, let us denote the
probability that each device joins the corresponding 1C model
(that shares the particular resource) as α1C ∈ [0, 1]; under

9Under the homogeneous distribution settings in Section V-A, all the tasks
will have the same expected energy consumption, so we only need to study
the expected energy consumption of a task.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:28 UTC from IEEE Xplore. Restrictions apply.

2452 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 11, NOVEMBER 2018

the 3C framework, the corresponding probability is α3C =
min{rα1C , 1}, where r ≥ 1 is a coefficient reflecting the ratio
of the increased cooperation opportunities. We will compute
the energy reduction ΔW (r, α1C , Np) � W (α1C , Np) −
W (α3C , Np) for r ≥ 1.

First, we calculate the expected energy, i.e., W (α, Np),
under particular α and Np. As we have explained, under
Assumption 2, any device’s task will be allocated to its
neighbor who has the highest capacity. By using the order
statistic result [20], the probability density function of the
highest capacity among a total of n devices is given by

f(n)(x) = n(F (x))n−1f(x). (28)

In the random graph, for a device with a degree m, the prob-
ability that N̂ of its neighbors join in the cooperative system
is P (N̂ |m) = CN̂

mαN̂ (1 − α)m−N̂ , and the corresponding
distribution of the highest capacity among these N̂ devices
and itself is f(N̂+1)(x). Taking the expectation over N̂ =
{0, ..., m}, the expected energy consumption of this device’s
task is given by

Ŵm(α, Np) =
m∑

N̂=0

P (N̂ |m)
∫ Q

Q

1
x

f(N̂+1)(x)dx. (29)

Taking the expectation of Ŵm(α, Np) over all degrees m =
{0, ...,∞} [18], the expected energy of a task is

W (α, Np) =
1
Q

+
∫ Q

Q

eNp(F (x)−1)αF (x)x−2dx, (30)

with the detailed proof given in [16].
Then, we discuss how much the 3C framework can reduce

the energy consumption under a coefficient r ≥ 1. We are
interested in the best (the maximum energy reduction) that
the 3C framework can achieve for any α1C and p under
an r, i.e., maxα1C ,p ΔW (r, α1C , Np). The maximum energy
reduction that is caused by the 3C framework is as follows:

Theorem 1 (Maximum Energy Reduction of Communica-
tion/Computation): Under a coefficient r ≥ 1, the maximum
energy reduction due to the 3C framework is given by

max
α1C ,p

ΔW (r, α1C , p)

=
∫ Q

Q

(
e

Np̃(F (x)−1)
r − eNp̃(F (x)−1)

)
F (x)x−2dx, (31)

where p̃ satisfies
∫ Q

Q

(F (x) − 1)F (x)
(
e

Np̃(F (x)−1)
r − reNp̃(F (x)−1)

)
dx = 0.

(32)
The proof is given in [16]. The key idea is to show that the

non-concave energy reduction ΔW (r, α1C , Np) has a unique
maximizer, which satisfies the first order condition.

Theorem 1 shows the maximum energy reduction under a
general capacity distribution F (x). In order to reveal practical
insights, we show a concrete example.

Example 1: Let us consider the truncated normal distrib-
ution F (x) = F (x; μ, σ, a, b), which can be regarded as a

Fig. 3. Normalized maximum energy reduction (μ = 2).

normal distribution N(μ, σ2) that lies within the interval [a, b]
(please refer to [16] and [21] for details). Figure 3 shows
the maximum energy reduction (normalized by the energy
consumption in the noncooperation case, W (0, 0)). From
Figure 3, we conclude as follows. (i) The energy reduction
is higher when the variance σ is larger. Intuitively, when
the devices and tasks are more heterogeneous, the frame-
work benefits more from exploiting the devices’ and tasks’
heterogeneities. (ii) Under a large variance σ (e.g., σ = 10),
doubling the sharing devices fraction (i.e., r = 2) leads to
a maximum energy reduction of around 20% of the energy
consumed in noncooperation.

2) Caching: The analysis for caching is similar as that
for the communication/computation, where the details and
proofs are given in the online report [16]. The expected energy
reduction of a content Z(α, Np) is as follows:

Z(α, Np) = (1 − M ca

K
)e−αNp Mca

K . (33)

Under this, the energy reduction due to 3C framework
is ΔZ(r, α1C , Np) � Z(α1C , Np) − Z(α3C , Np). Then,
the normalized maximum energy reduction is given as follows.

Theorem 2 (Maximum Energy Reduction of Caching):
Under a coefficient r ≥ 1, the normalized maximum energy
reduction (i.e., normalized by the energy consumption in the
noncooperation case Z(0, 0)) due to the 3C framework is
given by

maxα1C ,p ΔZ(r, α1C , Np)
Z(0, 0)

= e−
ln r

(r−1) − e−
r ln r
(r−1) . (34)

Based on Theorem 2, we conclude as follows. (i) The
normalized maximum energy reduction is independent of
the caching ratio M ca/K > 0. This means that no matter
how many contents that devices have cached, the normal-
ized maximum energy reduction is fixed. (ii) Doubling the
sharing device fraction (i.e., r = 2) leads to a maximum
energy reduction of around 25% of the energy consumed in
noncooperation.

VI. SIMULATION AND PERFORMANCE

We compare the energy consumption between optimal and
heuristic solutions. And we evaluate the energy reduction due
to 3C framework under different D2D transmission energy and
different devices’ and tasks’ heterogeneities. To emphasize,
we relax Assumption 2 in this section.

We consider a scenario with a set of N devices, who
form pair-wise connections with a probability p = 0.3. Each

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:28 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: ENABLING EDGE COOPERATION IN TACTILE INTERNET VIA 3C RESOURCE SHARING 2453

Fig. 4. Comparison between optimal and heuristic solutions.

Fig. 5. Impact of D2D energy β (under σ = 1.0) and variance σ (under
β = 0.5) on the normalized energy consumption.

device has one task to execute. For each simulation setting,
we perform 100 rounds and show the average results. For
each simulation round, we randomly generate the parameters
of the device and task models, which are randomly generated
based on truncated normal distributions [21], with an identical
variance σ (which will be evaluated later) and different means.
The detailed settings are shown in the online report [16].

A. Comparison: Optimal and Heuristic Solutions

We show how the device number N affects the energy
consumption of the optimal (named as “Opt.”) and the heuris-
tic algorithm (named as “Heu.”). Figure 4 shows the energy
comparison between “Opt.” and “Heu.”. The energy is nor-
malized by the energy consumed in the noncooperation case
(i.e., each device executes its task by itself). When N = 5,
the normalized percentage difference of the energy between
“Heu.” and “Opt.” is only 0.6%. As N increases, the energy
gap between “Opt.” and “Heu.” slightly increases.

B. Comparison: 1C/2C Models and 3C Framework

We let each device randomly selects a task among down-
loading, content sharing, and distributed data analysis. Then,
we perform simulations in two cooperation settings: (i)
“1C/2C”, where only the devices selecting the same kinds of
tasks cooperate; (ii) “3C”, where all the devices cooperate.

In Figure 5, we compare the energy of the two cooperation
settings under different D2D energy coefficients β (the ratio
of the D2D energy per unit time to the downloading energy
per unit time) and variances σ (the variance for generating
tasks and devices). Note that the energy consumption is
normalized by the energy consumed in the noncooperation
case. The percentage reduction in the figure is the energy

difference between “1C/2C” and “3C”, normalized by the
energy consumed in “1C/2C”.

In Figure 5 (a), “3C” can reduce the energy consumption
by 83.8% when β = 0, i.e., no additional energy consumption
due to D2D transmission. Such an energy reduction decreases
in β, but still achieves a value of 27.5% when β = 2.0, i.e., the
D2D energy per unit time is twice as large as the downloading
energy per unit time. In Figure 5 (b), as the heterogeneity
of devices and tasks (measured by the variance σ) increases,
the energy reduction caused by 3C framework increases. Intu-
itively, a higher heterogeneity can provide more opportunities
for the devices to share resources and help each other. Hence,
implementing the 3C framework is more beneficial when
devices and tasks are more heterogeneous.

VII. CONCLUSION

In this paper, we propose a general 3C framework that
enables the joint 3C resource sharing among mobile edge
devices, which potentially enhances the reliability and intel-
ligence of Tactile Internet. This “resource-centric” framework
generalizes existing D2D resource sharing models, and pro-
vides a structure for future D2D resource sharing analysis.
We theoretically and numerically show that the 3C framework
can further exploit resource sharing potentials and improve
resource utilization efficiency significantly. For future work,
it is interesting to design a distributed algorithm for the 3C
framework, where the information collection and allocation
scheduling are operated in a distributed fashion.

REFERENCES

[1] M. Tang, L. Gao, and J. Huang, “A general framework for crowdsourcing
mobile communication, computation, and caching,” in Proc. IEEE
GLOBECOM, Dec. 2017, pp. 1–6.

[2] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis,
“5G-enabled tactile Internet,” IEEE J. Sel. Areas Commun., vol. 34,
no. 3, pp. 460–473, Mar. 2016.

[3] M. R. Palattella et al., “Internet of Things in the 5G era: Enablers,
architecture, and business models,” IEEE J. Sel. Areas Commun., vol. 34,
no. 3, pp. 510–527, Mar. 2016.

[4] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “Efficient and fair
collaborative mobile Internet access,” IEEE/ACM Trans. Netw., vol. 25,
no. 3, pp. 1386–1400, Jun. 2017.

[5] D. Syrivelis, G. Iosifidis, D. Delimpasis, K. Chounos, T. Korakis,
and L. Tassiulas, “Bits and coins: Supporting collaborative consump-
tion of mobile Internet,” in Proc. IEEE INFOCOM, Apr./May 2015,
pp. 2146–2154.

[6] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the computation
offloading at ad hoc cloudlet: Architecture and service modes,” IEEE
Commun. Mag., vol. 53, no. 6, pp. 18–24, Jun. 2015.

[7] F. Chi, X. Wang, W. Cai, and V. C. M. Leung, “Ad hoc cloudlet based
cooperative cloud gaming,” in Proc. IEEE 6th Int. Conf. Cloud Comput.
Technol. Sci., Dec. 2015, pp. 190–197.

[8] J. Jiang, S. Zhang, B. Li, and B. Li, “Maximized cellular traffic
offloading via device-to-device content sharing,” IEEE J. Sel. Areas
Commun., vol. 34, no. 1, pp. 82–91, Jan. 2016.

[9] Z. Chen, Y. Liu, B. Zhou, and M. Tao, “Caching incentive design in
wireless D2D networks: A Stackelberg game approach,” in Proc. IEEE
ICC, May 2016, pp. 1–6.

[10] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in Proc. Federated Conf. Comput. Sci. Inf. Syst.,
Sep. 2014, pp. 1–8.

[11] A. Destounis, G. S. Paschos, and I. Koutsopoulos, “Streaming big
data meets backpressure in distributed network computation,” in Proc.
INFOCOM, Apr. 2016, pp. 1–9.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:28 UTC from IEEE Xplore. Restrictions apply.

2454 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 11, NOVEMBER 2018

[12] L. Militano, A. Orsino, G. Araniti, A. Molinaro, and A. Iera,
“A constrained coalition formation game for multihop D2D con-
tent uploading,” IEEE Trans. Wireless Commun., vol. 15, no. 3,
pp. 2012–2024, Mar. 2016.

[13] Wi-Fi Direct Alliance. Accessed: Oct. 10, 2018. [Online]. Available:
https://www.wi-fi.org/knowledge-center/faq/how-fast-is-wi-fi-direct

[14] A. Schrijver, Theory of Linear and Integer Programming. Hoboken, NJ,
USA: Wiley, 1998.

[15] G. B. Dantzig, “Origins of the simplex method,” in A History of Scientific
Computing. New York, NY, USA: ACM Press, 1990, pp. 141–151.

[16] Online Technical Report. Accessed: Oct. 10, 2018. [Online]. Available:
http://jianwei.ie.cuhk.edu.hk/publication/TechnicalReport_3CSharing_
2018.pdf

[17] A. Schrijver, Theory of Linear and Integer Programming. Hoboken, NJ,
USA: Wiley, 1998.

[18] A.-L. Barabási, Network Science. Cambridge, U.K.: Cambridge Univ.
Press, 2016.

[19] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching
networks: Basic principles and system performance,” IEEE J. Sel. Areas
Commun., vol. 34, no. 1, pp. 176–189, Jan. 2016.

[20] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in
Order Statistics. Philadelphia, PA, USA: SIAM, 2008.

[21] D. R. Barr and E. T. Sherrill, “Mean and variance of truncated normal
distributions,” Amer. Statist., vol. 53, no. 4, pp. 357–361, 1999.

Ming Tang (S’16) received the Ph.D. degree from
the Department of Information Engineering, The
Chinese University of Hong Kong, in 2018. She was
a Visiting Student with the Department of Manage-
ment Science and Engineering, Stanford University,
from 2017 to 2018. Her research interests include
wireless communications and network economics,
with a particular emphasis on user-provided net-
works and fog computing.

Lin Gao (SM’16) received the Ph.D. degree in elec-
tronic engineering from Shanghai Jiao Tong Univer-
sity in 2010. He is currently an Associate Professor
with the School of Electronic and Information Engi-
neering, Harbin Institute of Technology, Shenzhen,
China. His main research interests are in the area
of network economics and games, with applications
in wireless communications and networking. He
received the IEEE ComSoc Asia–Pacific Outstand-
ing Young Researcher Award in 2016.

Jianwei Huang (F’16) is currently a Professor
with the Department of Information Engineering,
The Chinese University of Hong Kong. He has
co-authored six books, including the textbook on
Wireless Network Pricing. He was a recipient of
nine Best Paper Awards, including the IEEE Marconi
Prize Paper Award in Wireless Communications
2011. He has served as the Chair of the IEEE
Technical Committee on Cognitive Networks and the
Technical Committee on Multimedia Communica-
tions. He is an IEEE ComSoc Distinguished Lecturer

and a Clarivate Analytics Highly Cited Researcher. More detailed information
can be found at http://jianwei.ie.cuhks.edu.hk/.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:03:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

