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Abstract—In cross-silo federated learning (FL), organizations
cooperatively train a global model with their local data. The
organizations, however, may be heterogeneous in terms of their
valuation on the precision of the trained global model and their
training cost. Meanwhile, the computational and communication
resources of the organizations are non-excludable public goods.
That is, even if an organization does not perform any local
training, other organizations cannot prevent that organization
from using the outcome of their resources (i.e., the trained
global model). To address the organization heterogeneity and
the public goods feature, in this paper, we formulate a so-
cial welfare maximization problem and propose an incentive
mechanism for cross-silo FL. With the proposed mechanism,
organizations can achieve not only social welfare maximization
but also individual rationality and budget balance. Moreover,
we propose a distributed algorithm that enables organizations to
maximize the social welfare without knowing the valuation and
cost of each other. Our simulations with MNIST dataset show
that the proposed algorithm converges faster than a benchmark
method. Furthermore, when organizations have higher valuation
on precision, the proposed mechanism and algorithm are more
beneficial in the sense that the organizations can achieve higher
social welfare through participating in cross-silo FL.

Index Terms—Federated learning, incentive mechanism, game
theory, public goods, resource allocation.

I. INTRODUCTION

A. Background and Motivation

Federated learning (FL) [1] is a decentralized machine
learning approach. In FL, multiple clients cooperatively train
a global model with their local data under the coordination of
a central server. During the training phase, each client period-
ically downloads the global model from the central server,
updates its local model by training the downloaded global
model with its local data, and uploads the model updates to
the central server for global model updating. Since each client
does not need to transfer its local data to the central server,
data privacy can be preserved. FL can be classified into two
types [1]: cross-device FL and cross-silo FL. In cross-device
FL, as shown in Fig. 1 (a), an organization (e.g., company,
institution) acts as the central server. This organization is the
owner of the global model. That is, it initiates the FL and
owns the trained global model. The devices are the clients and
perform local training. On the other hand, in cross-silo FL, as
shown in Fig. 1 (b), a third party entity acts as the central
server and is responsible for the coordination of training. A
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Fig. 1. An illustration of (a) cross-device FL and (b) cross-silo FL.

set of organizations act as the clients to perform local training.
They are also the owners of the global model and can make
use of the trained global model.

In this work, we focus on cross-silo FL. There have
been various industrial applications of cross-silo FL. Owkin
[2] cooperates with medical institutions for biomedical data
analysis. WeBank and Swiss Re [3] collaborate for data
analysis in finance and insurance. Other industrial examples
include the MELLODDY [4] for drug discovery and Feature-
Cloud [5] for medical data mining. Meanwhile, algorithms
have been developed to enable cross-silo FL. McMahan et
al. [6] proposed the federated average (FedAvg) algorithm
based on stochastic gradient descent. Built upon the FedAvg
algorithm, some recent works have proposed algorithms to
improve the convergence rate [7]–[9], accuracy [10], [11],
and security [12]. Some other works considered resource
optimization problem for FL, e.g., [13], [14]. Kairouz et al.
in [1] and Lim et al. in [15] provided comprehensive surveys
in the area of FL.

In cross-silo FL, each organization can choose the process-



ing capacity that it allocates for local training. The processing
capacities from different organizations will affect the precision
of the trained global model, i.e., the degree that the trained
global model fits the local data of the organizations. The selec-
tion of the processing capacity will also affect the computa-
tional cost of the organizations. Moreover, the communication
cost of each organization depends on how often it needs to
exchange model updates with the central server. On the other
hand, the organizations may be heterogeneous in terms of their
valuation on the precision (i.e., the degree that an organization
is concerned about the precision of the trained global model)
as well as the computational and communication costs. Hence,
the selection of the processing capacity has to be optimized to
ensure efficient cooperation, i.e., maximize the social welfare.
However, the organizations are independent entities and may
even be business competitors. Each organization may be self-
interest and may not aim at optimizing the social welfare. As
a result, it is necessary to design an incentive mechanism to
motivate efficient cooperation in cross-silo FL.

There are various challenging issues to address for the
design of an incentive mechanism for cross-silo FL. First,
the operation of the incentive mechanism should not rely on
the private information (e.g., valuation on precision, costs)
of the organizations. Second, the mechanism has to address
the fact that the computational and communication resources
in cross-silo FL provided by the organizations are public
goods [16]. Specifically, public goods are both non-excludable
(i.e., individuals cannot be excluded from using them) and
non-rivalrous (i.e., there is no competition in terms of using
them). An example of public goods is radio broadcast, where
everyone can receive the radio signal within a certain area
without competition. For cross-silo FL, the computational and
communication resources are non-excludable in the sense that
even if an organization does not perform any local training,
other organizations cannot exclude that organization from
using the outcome of their resources, i.e., the trained global
model. The resources are non-rivalrous since there is no
competition in terms of using the outcome of the resources.
In contrast to public goods, private goods are excludable
(i.e., individuals can be excluded from using the goods) and
rivalrous (i.e., there is competition in using the goods). For
example, when a person owns a laptop, other people can be
prevented from using it (i.e., excludable). If the person is using
the laptop, others cannot use it (i.e., rivalrous). Many incentive
mechanisms in the literature are for private goods, such as the
auction mechanisms (e.g., [17]), contract based mechanisms
(e.g., [18]), and pricing based mechanisms (e.g., [19]). Those
mechanisms are not applicable in cross-silo FL due to the
non-excludable and non-rivalrous features of the resources.

Despite the fact that cross-silo FL has various industrial
applications, there is a lack of comprehensive understanding
on the incentive mechanism for cross-silo FL. Although Lim
et al. in [20] proposed a coalition game based incentive
mechanism that can be applicable to cross-silo FL, it does not
consider how much processing capacity that the organizations
should use for local training. On the other hand, there are

existing works on the incentive mechanism design for cross-
device FL [21]–[23]. For example, Pandey et al. [21] proposed
a pricing scheme to motivate the devices to achieve certain
training precision. Kang et al. in [22] considered a contract
based algorithm to incentivize devices with high quality data
to participate in FL. Zhang et al. in [23] proposed a deep
reinforcement learning (DRL) based algorithm to determine
the optimal pricing strategy. However, those incentive mech-
anisms for cross-device FL cannot be applied to cross-silo
FL. This is because in those mechanisms for cross-device FL,
the central server (as the owner of the global model) has to
provide payment to the devices for FL training. In cross-silo
FL, however, the central server does not own the global model,
so it does not need to pay the organizations. In addition, the
public goods feature in cross-silo FL should be addressed.

In other application scenarios, there are existing works on
public goods. For example, Kakhbod et al. [24] proposed
an efficient incentive mechanism for multicasting in wireless
networks. Zhang et al. [25] designed an incentive mechanism
for wireless powered networks. Those mechanisms, however,
cannot be directly applied in cross-silo FL. First, those works
considered the scenario with one producer and multiple con-
sumers. In cross-silo FL, however, each organization is both
a producer (who contributes resources) and a consumer (who
utilizes the trained global model). Second, the social welfare
maximization problem in cross-silo FL is nonconvex, which
poses additional challenges for incentive mechanism design.

B. Solution and Contributions

To motivate efficient cooperation, in this paper, we propose
an incentive mechanism for cross-silo FL that addresses the
challenges resulting from the private information of the organi-
zations and the public goods feature. The proposed mechanism
helps the organizations to answer the following questions:
(a) How much processing capacity should each organization
allocate for local training? (b) How much should each orga-
nization be compensated (by other organizations) for its local
training? Moreover, based on the proposed mechanism, we
propose a distributed algorithm that enables the organizations
to maximize the social welfare in a decentralized manner. The
main contributions of this paper are as follows:
• Incentive Mechanism Design Problem for Cross-Silo FL:

We first formulate a social welfare maximization problem
for cross-silo FL, which is a nonconvex problem. Then,
we formulate an incentive mechanism design problem,
taking into account the heterogeneity of the organizations
and the public goods feature.

• Incentive Mechanism: We propose an incentive mecha-
nism for cross-silo FL. The proposed mechanism ad-
dresses the public goods feature, and its operation does
not rely on the private information of the organizations.
Given the proposed mechanism, the strategic interaction
among the organizations is modeled as a non-cooperative
game with perfect information (assuming that the organi-
zations know the private information of each other). We
prove that the Nash equilibrium (NE) of the game, i.e., the



strategy profile such that no organization has an incentive
to deviate, can lead to several properties. These include
social efficiency (i.e., the social welfare is maximized),
individual rationality (i.e., each organization is no worse
off by participating in cross-silo FL), and budget balance
(i.e., no third party investment is required).

• Distributed Algorithm: Based on our proposed incentive
mechanism, we further propose a distributed algorithm
that enables the organizations to achieve the NE of the
game without knowing the private information of each
other. That is, the algorithm solves the social welfare
maximization problem in a decentralized manner and
maintains the individual rationality and budget balance.

• Performance Evaluation: We conduct simulations with
MNIST dataset [26]. The simulation results show that the
proposed algorithm converges faster than the conventional
Lagrangian method [27, Section 8.1]. Moreover, with the
proposed mechanism and algorithm, organizations can
increase the social welfare through participating in cross-
silo FL. This enhancement is more significant when the
organizations have higher valuation on precision.

This paper is organized as follows. We present the system
model in Section II and the incentive mechanism in Section III.
The distributed algorithm is given in Section IV. We conduct
simulations in Section V and conclude in Section VI. We use
R, R+, and Z+ to denote the sets of real numbers, nonnegative
real numbers, and nonnegative integers, respectively.

II. SYSTEM MODEL

We consider a scenario with N organizations. Let N =
{0, . . . , N−1} denote the set of organizations. Each organiza-
tion has its own local data. Let Sn denote the collected dataset
of organization n ∈ N . Let Sn denote the number of data units
in set Sn, i.e., Sn = |Sn|. The organizations train a global
model using cross-silo FL to learn the collected data. Let ω
denote the weights of the global model. The organizations
aim to find the optimal weights of the global model ω∗ that
minimize the expected loss L(ω) over the datasets [6], [9]:

ω∗ = arg min
ω

{
L(ω) ,

∑
n∈N

Sn∑
n′∈N Sn′

l(ω;Sn)

}
, (1)

where l(ω;Sn) is the loss over dataset Sn given ω. On the
other hand, the organizations may have different valuation on
the precision of the trained global model and have different
computational and communication costs. Thus, some organi-
zations may need to pay other organizations to compensate
the cost of the latter ones. Otherwise, some organizations may
not cooperate.

In the following, we first present the FL model and the pay-
off of the organizations. We then formulate the social welfare
maximization and incentive mechanism design problems.

A. FL Model

The organizations cooperate to train a global model with
their collected datasets using the widely applied FedAvg algo-

rithm [6].1 As shown in Fig. 1 (b), a central server helps the
organizations with the training. The central server maintains
the global model. Each organization has a local model, which
has the same neural network structure as the global model.

At the beginning of the algorithm, the central server first
randomly initializes the weights of the global model ω0. The
algorithm iterates for multiple training rounds. Let ωr and ωrn
denote the weights of the global model and the local model
of organization n ∈ N in training round r, respectively. In
training round r, each organization n downloads the previous
weights of the global model ωr−1 from the central server.
It then performs K local updates over the downloaded global
model with its dataset Sn, where each local update corresponds
to a mini-batch stochastic gradient descent [6]. The updated
model is the local model of organization n, where ωrn is the
weights of the local model. After that, organization n uploads
ωrn to the central server. The central server updates the global
model by taking an average over the received weights from all
organizations, i.e., ωr =

∑
n∈N Snω

r
n/(
∑
n′∈N Sn′). Note

that the central server knows the values of Sn for n ∈ N [6].
Let fn (in CPU cycles per second) denote the processing

capacity used by organization n ∈ N for its local training. Let
f = (fn, n ∈ N ) denote the processing capacity vector. Let
Dn denote the number of CPU cycles required by organization
n to process one data unit. Let T UL

n and T DL
n (in seconds)

denote the time that organization n is required for uploading
and downloading the model updates in each training round,
respectively. The duration of each training round is as follows:

τ(f) = max
n∈N

{
SnDnK

fn
+ T UL

n + T DL
n

}
. (2)

The max operator is due to the fact that the central server
updates the global model after the weights of the local models
from all organizations have been received in a training round.

Similar to other existing works [21]–[23], we consider a
scenario where the datasets are unchanged across time. We
consider that there is a fixed total training time T ∈ R+.
This corresponds to the scenario where the organizations have
a deadline for the FL process. For example, the FL process
over the clinical data of infectious disease (e.g., COVID-19)
collected by multiple pharmaceutical companies on or before a
day may need to be completed within a deadline, as the results
may need to be used for the subsequent research on the vaccine
development. The number of training rounds is equal to the
total training time divided by the duration of each round:

r(f) = T/τ(f). (3)

Similar to [21], [22], we do not round up r(f) for simplicity.
This is reasonable as r(f) is usually large in practice, so the
difference between r(f) and its rounded value is negligible.

Let mn (in dollars) denote the monetary transfer to orga-
nization n ∈ N . If mn > 0, then organization n receives
mn from other organizations. If mn < 0, then organization n

1This work can be extended to other synchronous FL algorithms (e.g., [7],
[8]) by modifying the precision formulation in (4).



pays |mn| to some other organizations. The monetary transfer
is between the organizations, i.e., some organizations pay other
organizations.2 Let vector m = (mn, n ∈ N ).

B. Payoff of the Organizations

We now define the utility and cost functions of the organi-
zations as well as the payoff function.

1) Utility: As in the existing work [21], we define the
utility of each organization as a function of the precision of
the trained global model.3 The precision of the trained global
model is defined as the difference between the expected loss of
the trained global model (after r(f) training rounds) and the
minimum expected loss [7], [9], [21], i.e., L(ωr(f))−L(ω∗).
Note that a smaller precision implies a smaller loss of the
trained global model and hence a better fit of the model to the
datasets. Let ε(r(f)) denote the precision of the trained global
model with r(f) training rounds.4 Under a strongly convex
loss function L(ω), ε(r(f)) can be modeled as follows [9]:

ε(r(f)) = ε0/(ε1 +Kr(f)), (4)

where ε0 and ε1 are positive coefficients. These coefficients
can be derived based on the loss function, the neural network
structure, and the distribution of the datasets [9]. In (4), as r(f)
increases, the precision is non-increasing, and the marginal
decrease of the precision reduces. Our proposed mechanism
and algorithm are applicable to any function of ε(r(f)) that is
non-increasing and convex in r(f) as well as having a bounded
ε(0) (i.e., the initial global model has a bounded precision).

The utility of organization n ∈ N is its valuation on the
difference between the precision of the global model without
training (i.e., ε(0)) and that of the trained global model:

Un(r(f)) = un (ε(0)− ε(r(f))) , n ∈ N , (5)

where un (in dollars per unit of loss) is the unit revenue that
organization n can earn from its market by using the trained
global model. For example, un can be the unit revenue that
a pharmaceutical company can earn from its customers by
selling vaccine, where the clinical data analysis for developing
vaccine was performed by cross-silo FL. This revenue is dif-
ferent from the monetary transfer between organizations (i.e.,
m) for motivating cooperation. Note that un of organization n
may be unknown to other organizations and the central server.

2) Cost: The cost of an organization is defined as follows:

Cn(fn, r(f)) = (CUL
n + CDL

n ) r(f) + C invt
n fn

+ Ccomp
n (fn)2SnDnKr(f), n ∈ N . (6)

2The central server in cross-silo FL can help the organizations to collect the
payment from the organizations with negative mn and distribute the collected
payment to those with positive mn. We will later require

∑
n∈N mn = 0.

3We follow [9] to use the term ‘precision’. The term ‘accuracy’ is used in
[7], [21] with the same meaning and definition.

4Due to the complicated neural network structure, it is challenging to obtain
the precision of the trained global model. As in [7], [21], ε(r(f)) corresponds
to the upper-bound of the precision of the trained global model. That is,
L(ωr(f))−L(ω∗) ≤ ε(r(f)). Recall that L(ω∗) is the minimum expected
loss, thus the inequality L(ωr(f)) ≥ L(ω∗) always holds. We follow [7],
[21] to refer to ε(r(f)) as the precision of the trained global model.

The parameters CUL
n and CDL

n are the operating costs for
uploading and downloading the model updates in each training
round, respectively. The product C invt

n fn corresponds to the
investment cost (e.g., leasing servers) per processing capacity,
where the linearity is due to the linear server leasing rate [28].
The term Ccomp

n (fn)2 is the operating cost of organization n
for performing one CPU cycle, where the quadratic form is
supported by the widely adopted quadratic energy consump-
tion model for processors (e.g., [13], [22]). Note that the cost
function Cn(fn, r(f)) of any organization n may be unknown
to other organizations and the central server.

3) Payoff: The payoff of organization n ∈ N is defined as
the difference between its utility and cost and the additional
monetary transfer. For organization n ∈ N , the payoff is

Vn(fn, r(f),mn) = Un(r(f))− Cn(fn, r(f)) +mn. (7)

C. Problem Formulation

We now present the social welfare maximization problem
and formulate the incentive mechanism design problem.

1) Social Welfare Maximization: From the social perspec-
tive, the organizations should choose the processing capacity
vector f that maximizes the social welfare of the system:

maximize
f

∑
n∈N (Un(r(f))− Cn(fn, r(f))) (8a)

subject to fn ≥ 0, n ∈ N . (8b)

Problem (8) is nonconvex, since Cn(fn, r(f)) is noncovex in
f . Each organization, however, is interested in maximizing its
payoff instead of the social welfare.

2) Incentive Mechanism Design Problem: To motivate effi-
cient cooperation among the organizations, we aim to design
an incentive mechanism. This mechanism should be able to
address the public goods feature of the resources of the
organizations. We consider an incentive mechanism as follows:
• Each organization n ∈ N submits a message profile

(γn, πn) to the central server. Message γn indicates the
number of training rounds that organization n expects to
have. Message πn indicates the unit monetary transfer
per training round that organization n expects to pay or
receive. Let γ = (γn, n ∈ N ) and π = (πn, n ∈ N ).

• The central server computes and announces the process-
ing capacity vector f(γ) = (fn(γ), n ∈ N ) and the mon-
etary transfer vector m(γ,π) = (mn(γ,π), n ∈ N ).

We aim to design f(γ) and m(γ,π) in the incentive mecha-
nism. Note that the actual monetary transfer to organization n
(i.e., mn(γ,π)) depends on the choice of m(γ,π). Thus, it
is not necessarily equal to the monetary transfer specified by
organization n in message profile (i.e., the number of training
rounds γn multiplied by the unit monetary transfer πn).

Given the incentive mechanism, the organizations have to
decide the message profiles to submit. The strategic inter-
action among the organizations can be modeled as a non-
cooperative game. Let (γNE,πNE) denote the NE of the game.
That is, given the message profiles of other organizations,
organization n ∈ N cannot increase its payoff by deviating



from (γNE
n , πNE

n ). We aim to design f(γ) and m(γ,π) in the
incentive mechanism such that the NE of the game satisfies
the following properties P1, P2, and P3:

P1 Social efficiency: The processing capacity vector under
NE, i.e., f(γNE), is the optimal solution of problem (8).

P2 Individual rationality: Each organization is no
worse off through participating in cross-silo FL, i.e.,
Vn(fn(γNE), r(f(γNE)),mn(γNE,πNE)) ≥ 0 for n ∈ N .

P3 Budget balance: The summation of the monetary trans-
fer of all organizations is zero, i.e.,

∑
n∈N mn(γNE,πNE) = 0.

In other words, the monetary transfer can operate among the
organizations without any third party investment.

III. INCENTIVE MECHANISM DESIGN

In this section, we design an incentive mechanism for
cross-silo FL to achieve properties P1−P3. To address the
public goods feature of the resources, our proposed incentive
mechanism is inspired by the existing mechanisms for public
goods in other application scenarios, e.g., [24], [25]. Different
from those existing mechanisms, our proposed mechanism
can further address the following new challenges in cross-
silo FL. First, the social welfare maximization problem (8) is
nonconvex. Second, each organization is both a producer who
contributes resources and a consumer who utilizes the trained
global model.

In the following, we first propose the incentive mechanism.
We then analyze the strategies of the organizations and the
properties of the incentive mechanism.

A. Incentive Mechanism

In the incentive mechanism, we consider the central server
in cross-silo FL helps the organizations to collect the message
profiles as well as compute the processing capacity and mone-
tary transfer of the organizations. Note that it may be infeasible
to let the central server directly solve problem (8) and the
incentive mechanism design problem due to the private infor-
mation of the organizations. Let r̄ denote the maximum pos-
sible number of training rounds, i.e., r̄ , maxfn≥0,n∈N r(f).
By substituting r(f) = T/τ(f) and τ(f) defined in (2),
we can obtain r̄ = minn∈N {T/(T UL

n + T DL
n )}. The incentive

mechanism for cross-silo FL is as follows.

Mechanism 1 (Incentive Mechanism for Cross-Silo FL). First,
each organization n ∈ N submits a message profile (γn, πn)
to the central server, where
• γn ∈ [0, r̄] indicates the number of training rounds that

organization n expects to have.
• πn ∈ R indicates the unit monetary transfer per training

round that organization n expects to receive or send.
Second, the central server computes and announces the num-
ber of training rounds that each organization needs to perform,
denoted by r̃(γ), processing capacity f(γ) = (fn(γ), n ∈
N ), and monetary transfer m(γ,π) = (mn(γ,π), n ∈ N ):
• r̃(γ) is computed as follows:

r̃(γ) =
∑
n∈N γn/N. (9)

• fn(γ) is the processing capacity that organization n
should use in its local training:

fn(γ) = f?n(r̃(γ)) ,
SnDnK

T
r̃(γ) − T UL

n − T DL
n

, n ∈ N , (10)

where f?n(r̃(γ)) is the processing capacity that organiza-
tion n should use to achieve r̃(γ) training rounds.

• mn(γ,π) is the monetary transfer to organization n:

mn(γ,π) = r̃(γ)
(
πµ(n+1) − πµ(n+2)

)
, (11)

where µ(n + 1) is equal to n + 1 modulo N .5 In (11),
the monetary transfer to organization n is equal to the
number of training rounds multiplied by the difference
between the unit monetary transfer submitted by the
organizations with indices µ(n+ 1) and µ(n+ 2).

Intuitively, in Mechanism 1, to address the public goods
feature (i.e., non-excludable, non-rivalrous), each organization
n ∈ N is treated equally regardless of its πn. In Mechanism
1, the number of training rounds that each organization has
to perform (i.e., r̃(γ)) is equal to the average value of the
number of training rounds that the organizations expect to
have. The processing capacity of each organization has to lead
to r̃(γ) training rounds. The definition of monetary transfer
in (11) has three features that make the proposed incentive
mechanism achieve properties P1−P3 mathematically. First,
the payoff of organization n does not rely on the choice of πn.
Second, the payoff of organization n is linear in the number of
training rounds. Third, it always holds that the summation of
the monetary transfer to all organizations, i.e., the summation
of mn(γ,π) over all n ∈ N , is equal to zero. Moreover,
we will discuss in Section IV that when the organizations do
not know the private information of each other, equation (11)
ensures any organizations µ(n+ 1) and µ(n+ 2) for n ∈ N
to gradually change the value of πµ(n+1)−πµ(n+2) in order to
motivate organization n to choose the value of γn that leads
to social efficiency.

B. Analysis of the Strategies of the Organizations

We first define the game of the organizations. Then, we
derive the NE and the properties of Mechanism 1.

1) Game of the Organizations: Given Mechanism 1, each
organization can optimize its message profile to maximize its
payoff. Such strategic interaction can be modeled as a non-
cooperative game with perfect information (i.e., the organi-
zations know the private information of each other). We will
relax the perfect information requirement in Section IV. The
game of the organizations is defined as follows.

Game 1 (Message Profile Submission).
• Player: all organizations n ∈ N .
• Strategy: message profile (γn, πn) with γn ∈ [0, r̄] and
πn ∈ R for each organization n ∈ N .

5For example, consider N = 10, i.e., the set of organizations is N =
{0, 1, . . . , 9}. If n ∈ {0, 1, . . . 7}, then µ(n+ 1) = n+ 1 and µ(n+ 2) =
n + 2. If n = 8, then µ(n + 1) = 9 and µ(n + 2) = 0. If n = 9, then
µ(n+ 1) = 0 and µ(n+ 2) = 1.



• Payoff function: Vn(fn(γ), r̃(γ),mn(γ,π)) for n ∈ N .
Note that Vn(fn(γ), r(f(γ)),mn(γ,π)) is equal to
Vn(fn(γ), r̃(γ),mn(γ,π)) according to (10).

Let (γ−n,π−n) denote the message profiles submitted
by all organizations excluding organization n ∈ N , i.e.,
γ−n = (γn′ , n′ ∈ N \ {n}) and π−n = (πn′ , n′ ∈ N \ {n}).
For simplicity, we will use f(γn,γ−n) and f(γ), r̃(γn,γ−n)
and r̃(γ), as well as mn(γn, πn,γ−n,π−n) and mn(γ,π)
interchangeably. The NE of Game 1 is defined as follows.

Definition 1 (Nash equilibrium). An NE of Game 1 is a
message profile (γNE,πNE) that satisfies

Vn(fn(γNE), r̃(γNE),mn(γNE,πNE))

≥ Vn(fn(γn,γ
NE
−n), r̃(γn,γ

NE
−n),mn(γn, πn,γ

NE
−n,π

NE
−n)),

γn ∈ [0, r̄], πn ∈ R, n ∈ N . (12)

According to (11), we have mn(γn, πn,γ
NE
−n,π

NE
−n) =

mn(γn, π
NE
n ,γNE

−n,π
NE
−n) for πn ∈ R under any N ≥ 3. Hence,

the following inequality is equivalent to inequality (12):

Vn(fn(γNE), r̃(γNE),mn(γNE,πNE))

≥ Vn(fn(γn,γ
NE
−n), r̃(γn,γ

NE
−n),mn(γn, π

NE
n ,γNE

−n,π
NE
−n)),

γn ∈ [0, r̄], n ∈ N . (13)

From (12) to (13), we replace mn(γn, πn,γ
NE
−n,π

NE
−n) with

mn(γn, π
NE
n ,γNE

−n,π
NE
−n). In the rest of this paper, we focus on

the scenario with N ≥ 3. If N = 1, then cross-silo FL cannot
be operated. If N = 2, then we can introduce an additional
virtual organization with zero utility and cost.

2) Nash Equilibrium and Properties: According to Defini-
tion 1 and inequality (13), any NE should satisfy the following.

Lemma 1 (Nash Equilibrium). A message profile (γNE,πNE)
is an NE of Game 1 if and only if

γNE
n = N arg max

r∈[0,r̄]
Vn(f?n(r), r,mn(r1,πNE))

−
∑
n′∈N\{n} γ

NE
n′ , n ∈ N , (14)

where 1 is an all-one vector with length N . The function
mn(r1,πNE) = r(πNE

µ(n+1) − π
NE
µ(n+2)) defines the monetary

transfer to organization n under r training rounds given πNE.

The proof is given in Appendix A. Intuitively, Lemma 1
implies that (γNE,πNE) is an NE if and only if under πNE,
γNE leads to the number of training rounds r̃(γNE) that maxi-
mizes the payoff of each organization, i.e.,

∑
n′∈N γ

NE
n′ /N =

r̃(γNE) = arg maxr∈[0,r̄] Vn(f?n(r), r,mn(r1,πNE)), n ∈ N .
According to Lemma 1 as well as equations (9), (10), and

(11), Mechanism 1 satisfies properties P1, P2, and P3.

Theorem 1 (Efficiency). Under any NE of Game 1, i.e.,
(γNE,πNE), f(γNE) optimizes problem (8).

The proof of Theorem 1 is given in Appendix B.

Proposition 1 (Individual Rationality). Under any NE of
Game 1, i.e. (γNE,πNE), each organization has nonnegative
payoff, i.e., Vn(fn(γNE), r̃(γNE),mn(γNE,πNE)) ≥ 0, n ∈ N .

This holds because Vn(fn(γNE), r̃(γNE),mn(γNE,πNE)) ≥
Vn(f?n(0), 0,mn(0,πNE)) = 0 for n ∈ N due to Lemma 1,
where 0 is a zero vector with length N .

Proposition 2 (Budget Balance). Under any NE of Game 1,
i.e., (γNE,πNE), the summation of the monetary transfer of all
organizations is equal to zero, i.e.,

∑
n∈N mn(γNE,πNE) = 0.

Proposition 2 is proven by substituting mn(γNE,πNE) de-
fined in (11) into

∑
n∈N mn(γNE,πNE).

IV. DISTRIBUTED ALGORITHM DESIGN

In this section, we propose a distributed algorithm that
enables the organizations to achieve the NE of Game 1.
The proposed algorithm can address the challenges regarding
the nonconvexity of problem (8) and the unknown private
information of the organizations. The main idea is to first
reformulate the social welfare maximization problem. Since
the saddle point of the Lagrangian of the reformulated problem
is the NE of Game 1, we can then design a distributed
algorithm that converges to the saddle point of the Lagrangian
and hence the NE of Game 1. In the following, we first
reformulate the social welfare maximization problem. Then,
we propose the distributed algorithm.

A. Problem Reformulation

We introduce an auxiliary variable r = (rn, n ∈ N ),
where rn is the number of training rounds that organization
n performs. Since rn should be identical for all n ∈ N , we
have the following social welfare maximization problem:

maximize
r

∑
n∈N (Un (rn)− Cn (f?n(rn), rn)) (15a)

subject to rµ(n−2) = rµ(n−1), n ∈ N , (15b)
rn ∈ [0, r̄], n ∈ N . (15c)

Constraint (15b) can be expanded as rN−2 = rN−1 for n = 0,
rN−1 = r0 for n = 1, and rn−2 = rn−1 for 2 ≤ n ≤ N−1. It
implies that rn has to be identical for all n ∈ N . We write it
in the form of rµ(n−2) = rµ(n−1), n ∈ N for the simplicity of
algorithm design. Let r∗ be the optimal solution to problem
(15), and let r∗ = r∗0 = · · · = r∗N−1. Then, the processing
capacity f?(r∗) = (f?n(r∗), n ∈ N ) optimizes problem (8).

We define the Lagrangian of problem (15), i.e., L : [0, r̄]N×
RN → R, as follows:

L(r,λ) =
∑
n∈N (Un (rn)− Cn (f?n(rn), rn))

−
∑
n∈N λn

(
rµ(n−2) − rµ(n−1)

)
, (16)

where λ = (λn, n ∈ N ) is the vector of the Lagrange
multipliers. Note that L(r,λ) can be decoupled into multiple
functions. That is, L(r,λ) =

∑
n∈N Ln(rn,λ), and

Ln(rn,λ) = Un (rn)− Cn (f?n(rn), rn)

−
(
λµ(n+2) − λµ(n+1)

)
rn, n ∈ N . (17)

For n ∈ N , λµ(n+2) and λµ(n+1) are the Lagrange multipliers
correspond to constraints rn = rµ(n+1) and rµ(n−1) = rn, re-
spectively. Based on (7), (11), and (17), we have Ln(rn,λ) =



Vn (f?n (rn) , rn,mn(rn1,λ)) for all n ∈ N . This is the payoff
of organization n under rn training rounds, given λ.

For problem (15), strong duality holds according to Slater’s
condition. Hence, the saddle point of Lagrangian L(r,λ),
denoted by (r∗,λ∗), exists. That is, L(r,λ∗) ≤ L(r∗,λ∗) ≤
L(r∗,λ) for any r ∈ [0, r̄]N , λ ∈ RN . Thus, we can prove
that if (r∗,λ∗) is a saddle point of L(r,λ), then it is an NE
of Game 1, with the proof given in Appendix C.

Lemma 2 (Saddle Point and NE). For any saddle point of
L(r,λ), denoted by (r∗,λ∗), the message profile (γNE =
r∗,πNE = λ∗) is an NE of Game 1.

B. Distributed Algorithm

Our proposed algorithm is inspired by the distributed ac-
celerated augmented Lagrangian method [29], which is a
distributed algorithm for achieving the saddle point of the
Lagrangian of a constrained problem. We have modified the
algorithm in [29] to adapt to the cross-silo FL scenario.
Specifically, we replace the notations r and λ in L(r,λ) with
notations γ and π, respectively. In the proposed algorithm,
the organizations aim to find the saddle point of L(γ,π) =∑
n∈N Ln(γn,π) =

∑
n∈N Vn (f?n (γn) , γn,mn(γn1,π)).

The obtained saddle point is the NE of Game 1.
The proposed algorithm is given in Algorithm 1, where the

organizations update message profiles for multiple iterations
until the algorithm converges. Let t ∈ Z+ denote the iteration
index. Each organization n first randomly initializes its mes-
sage profile (γn(0), πn(0)). While the convergence indicator
Convg Indicator = 0, each organization n submits message
profile (γn(t), πn(t)) in iteration t. Then, the central server
sends the submitted message profiles to the organizations.
Steps 7-9 correspond to how each organization n updates its
message profile. In Step 7, organization n first computes γ̂n(t)
by deriving the value of γn ∈ [0, r̄] that maximizes

V ρn (γn,γ−n,π) = Vn(f?n(γn), γn,mn(γn1,π))

− ρ
∑
n∈N

(
γµ(n−2) − γµ(n−1)

)2
, (18)

where ρ is a penalty coefficient. The second term can be re-
garded as a term for penalizing the different number of training
rounds submitted by the organizations (i.e., γµ(n−2) 6= γµ(n−1)

for n ∈ N ). In Steps 8 and 9, organization n computes the
updated message profile (γn(t+ 1), πn(t+ 1)) by considering
a step size η ∈ (0, 1). A larger η implies a more aggressive
update. An intuition behind Step 9 is as follows. Suppose the
number of training rounds submitted by organization µ(n−2)
is much larger than that submitted by organization µ(n − 1)
(i.e., the difference γµ(n−2)(t) − γµ(n−1)(t) is large). Then,
πn(t + 1) is large based on Step 9. According to (11), the
large value of πn(t+1) will lead to a small monetary transfer
to organization µ(n− 2) and a large monetary transfer to or-
ganization µ(n−1). Hence, in the next iteration, organizations
µ(n−2) and µ(n−1) will reduce and increase the number of
training rounds that they submit, respectively. The algorithm

Algorithm 1: Distributed Algorithm for Cross-Silo FL

1 Organization n ∈ N randomly initializes γn(0), πn(0);
2 t← 0, Convg Indicator← 0;
3 while Convg Indicator = 0 do
4 Organization n ∈ N submits (γn(t), πn(t));
5 Central server sends organizations γ(t) and π(t) ;
6 for organization n ∈ N in parallel do
7 γ̂n(t)← arg maxγn∈[0,r̄] V

ρ
n (γn,γ−n(t),π(t));

8 γn(t+ 1)← γn(t) + η (γ̂n(t)− γn(t));
9 πn(t+1)← πn(t)+ρη(γµ(n−2)(t)−γµ(n−1)(t));

10 end
11 t← t+ 1;
12 if |γn(t+ 1)− γn(t)| ≤ φ, n ∈ N then
13 Convg Indicator← 1;
14 end
15 end

TABLE I
PARAMETER SETTINGS

Param. Value Param. Value
N 10 Model size 0.16 Mbits
K 5 DL speed 78.26 Mbps [30]
T 60 seconds UL speed 42.06 Mbps [30]
Dn 0.01 gigacycles Invest. cost $0.22 per GHz per hour [31]
Sn 600 samples DL energy 3 joules per Mbit [32]
ε0 9.82 UL energy 3 joules per Mbit [32]
ε1 4.26 Elec. rate $0.174 per kWh [33]

terminates when the absolute difference between γn(t+1) and
γn(t) for all n ∈ N is smaller than a predefined threshold φ.

Algorithm 1 converges to the NE of Game 1, which can be
proven based on [29, Theorem 2] and Lemma 2.

Proposition 3 (Convergence). For any ρ ∈ R+ that ensures
V ρn (γn,γ−n,π) to be strictly concave for γ ∈ [0, r̄]N , π ∈
RN , n ∈ N , Algorithm 1 converges to the NE of Game 1.

V. PERFORMANCE EVALUATION

We conduct simulations based on dataset MNIST [26] using
FedAvg [6]. This dataset contains the figures of handwritten
digits. It has been used by many existing works on FL, e.g.,
[7], [9]. Table I shows the parameter settings. In Table I,
‘param.’, ‘invest.’, and ‘elec.’ are the short-forms for ‘pa-
rameter’, ‘investment’, and ‘electricity’, respectively. We set
N = 10, as the number of organizations in cross-silo FL is
always small [1]. We consider a small T = 60 seconds, as the
MNIST dataset is easy to train in the sense that hundreds of
training rounds can achieve a high digit recognition correctness
rate. Parameters Sn, Dn, model size (i.e., the size of ω), ε0,
and ε1 are obtained from the MNIST dataset [26]. We set
η = 0.3, φ = 0.0001, and ρ = 0.00005.

A. Convergence Rate

Fig. 2 shows the convergence of our proposed Algorithm 1,
denoted by ‘augmented Lagrangian’, and another Lagrangian
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Fig. 2. Number of iterations under different (a) standard deviation σ (with
N = 10) and (b) number of organizations N (with σ = 1).
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Fig. 3. Convergence of the message profiles: (a) γn in homogeneous scenario;
(b) ζn in homogeneous scenario; (c) γn in heterogeneous scenario; (d) ζn in
heterogeneous scenario. Note that ζn , πµ(n+1) − πµ(n+2).

based algorithm [27, Section 8.1],6 denoted by ‘Lagrangian’.
Note that both algorithms can converge to the NE of Game 1.
In the simulation, un for n ∈ N is randomly generated using
the truncated normal distribution with a mean of 10 and a
standard deviation of σ.7 The results are shown using boxplot
[34]. The percentage in the figure gives the average percentage
reduction that the proposed algorithm induces when compared
with ‘Lagrangian’. In Fig. 2, the proposed algorithm signifi-
cantly reduces the number of iterations, especially when the
number of organizations is large.

B. Algorithm Convergence under Two Instances

Fig. 3 shows the convergence of the message profiles sub-
mitted by the organizations across iterations. In Fig. 3 (a) and
(b), we consider a homogeneous scenario where un = 10 for
all n ∈ N . As the number of iterations increases, γn gradually
converges to the optimal number of training rounds r(f∗) for
all n ∈ N , where f∗ is the optimal solution to problem (8).

6The Lagrangian based algorithm [27, Section 8.1] is an algorithm for
finding the saddle point of any Lagrangian. In the simulation, it has been
modified to solve the problem in the cross-silo FL scenario.

7We set the mean as 10, as the NE under un = 10 for n ∈ N leads to
the number of training rounds that can achieve a digit recognition correctness
rate of more than 90%. Our observations also hold for other values of mean.
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Fig. 4. Effect of valuation difference u− u (with (u+ u)/2 = 10) on: (a)
monetary transfer mn; (b) social welfare (SW).
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Fig. 5. Effect of average valuation (u + u)/2 (with u − u = 12) on: (a)
monetary transfer mn; (b) social welfare (SW).

This implies that after the algorithm has converged, the social
welfare is maximized. In addition, the unit monetary transfer
ζn , πµ(n+1) − πµ(n+2) converges to zero for all n ∈ N .
Intuitively, since the organizations are homogeneous, they do
not need to pay each other to motivate the cooperation.

In Fig. 3 (c) and (d), we consider a heterogeneous scenario
where un = 4 for 0 ≤ n ≤ 4 and un = 16 for 5 ≤ n ≤
9. Similarly, γn gradually converges to r(f∗). For the unit
monetary transfer, ζn for 0 ≤ n ≤ 4 converges to a positive
value ζNE, and ζn for 5 ≤ n ≤ 9 converges to the negative
value of ζNE, i.e., −ζNE. Note that ζNE and −ζNE are the unit
monetary transfer for an organization 0 ≤ n ≤ 4 and 5 ≤ n ≤
9 under NE, respectively. Intuitively, the organizations in set
{0, 1, 2, 3, 4} have lower valuation, so the other organizations
have to pay them to motivate their participation.

C. Nash Equilibrium under Different Scenarios

Figs. 4 and 5 show the monetary transfer of the organiza-
tions and the social welfare under the NE of Game 1. Let mNE

n

denote the monetary transfer to organization n ∈ N under NE.
In these simulations, we set un = u for 0 ≤ n ≤ 4 and un = u
for 5 ≤ n ≤ 9. In Fig. 4 (a), as the valuation difference u−u
increases, the payment from the organizations with higher
valuation (i.e., 5 ≤ n ≤ 9) to those with lower valuation (i.e.,
0 ≤ n ≤ 4) increases. Intuitively, if the organizations are more
heterogeneous in terms of their valuation (i.e., u−u is larger),
those with higher valuation should pay more to motivate those
with lower valuation to cooperate. In Fig. 4 (b), as we have
proven, the social welfare under NE is always equal to the
optimal social welfare. The social welfare under NE does not
change with u − u, as the optimal processing capacity does
not change with u− u given any (u+ u)/2.

In Fig. 5 (a), as the average valuation (u+ u)/2 increases,
the payment from the organizations with higher valuation (i.e.,
5 ≤ n ≤ 9) to those with lower valuation (i.e., 0 ≤ n ≤ 4)
reduces. This is because the relative valuation difference (i.e.,



(u − u)/((u + u)/2)) decreases. In Fig. 5 (b), as (u + u)/2
increases, the social welfare under NE increases. This implies
that when the organizations have higher valuation, they can
achieve higher social welfare by participating in cross-silo FL,
so the proposed mechanism and algorithm are more beneficial.

VI. CONCLUSION

In this work, we proposed an incentive mechanism for cross-
silo FL that addresses the public goods feature. The proposed
mechanism can achieve social efficiency, individual rationality,
and budget balance. We further proposed a distributed algo-
rithm that enables the organizations to achieve social efficiency
without knowing the private information of each other. The
simulation results with MNIST dataset show that the proposed
algorithm can achieve faster convergence than the conventional
Lagrangian method. Meanwhile, the proposed mechanism and
algorithm enable the organizations to achieve higher social
welfare through participating in cross-silo FL, especially when
the organizations have high valuation on precision. For future
work, one direction is to further consider the non-independent
and identically distributed (non-i.i.d.) data of the organizations.
Another research direction is to consider the scenario where
the organizations can choose the number of training rounds
that they participate in according to their valuation on precision
and their computational and communication costs.

APPENDIX

A. Proof for Lemma 1

Suppose (γNE,πNE) satisfies (14) but is not an NE. Then,
there exists γ′n for n ∈ N such that for γ′ = (γ′n,γ

NE
−n),

Vn(f?n(r̃(γ′)), r̃(γ′),mn(r̃(γ′)1,πNE))

> Vn(f?n(r̃(γNE)), r̃(γNE),mn(r̃(γNE)1,πNE)), (19)

where inequality (19) contradicts inequality (14).
Suppose (γNE,πNE) is an NE of Game 1, while (14) does

not hold for some n ∈ N . Then, there exists γ′n for an
organization n ∈ N such that for γ′ = (γ′n,γ

NE
−n),

Vn(fn(γ′), r̃(γ′),mn(γ′,πNE))

> Vn(fn(γNE), r̃(γNE),mn(γNE,πNE)), (20)

which violates the assumption that (γNE,πNE) is an NE.

B. Proof for Theorem 1

To prove Theorem 1, we formulate an optimization problem
with respect to the number of training rounds:

maximize
r

∑
n∈N (Un(r)− Cn(f?n(r), r)) (21a)

subject to r ∈ [0, r̄]. (21b)

If r∗ is an optimal solution to problem (21), then we can prove
that the processing capacity vector f?(r∗) = (f?n(r∗), n ∈ N )
is an optimal solution to problem (8).

We now prove that for any NE of Game 1 (γNE,πNE),
f(γNE) is an optimal solution to problem (8). This is proven
by showing that rNE , r̃(γNE) is the optimal solution to

problem (21). In the following, we first analyze problem (21)
and then prove that rNE is an optimal solution to (21).

As problem (21) is a convex problem with strictly con-
cave objective function and continuously differentiable linear
constraints, its Karush-Kuhn-Tucker (KKT) conditions are
sufficient for optimality. Hence, r∗ is an optimal solution to
(21) if there exist Lagrange multipliers α∗ and β∗ such that
the following KKT conditions are satisfied:8∑
n∈N

(
∂Un(r∗)

∂r∗
− ∂Cn(f?n(r∗), r∗)

∂r∗

)
+ α∗ − β∗ = 0, (22a)

r∗ ≥ 0, r∗ ≤ r̄, α∗ ≥ 0, β∗ ≥ 0, (22b)

α∗r∗ = 0, β∗(r∗ − r̄) = 0. (22c)

In terms of the NE (γNE,πNE) and the resulting rNE,
according to Lemma 1, there exist αNE = (αNE

n , n ∈ N ) and
βNE = (βNE

n , n ∈ N ) such that the following holds:

rNE =
∑
n∈N γ

NE
n /N, (23a)

∂Un(rNE)

∂rNE − ∂Cn(f?n(rNE), rNE)

∂rNE

+ (πNE
µ(n+1) − π

NE
µ(n+2)) + αNE

n − βNE
n = 0, n ∈ N , (23b)

rNE ≥ 0, rNE ≤ r̄, αNE
n ≥ 0, βNE

n ≥ 0, n ∈ N , (23c)

αNE
n rNE = 0, βNE

n (rNE − r̄) = 0, n ∈ N . (23d)

Conditions (23b)−(23d) correspond to the KKT conditions of
maxr∈[0,r̄] Vn(f?n(r), r,mn(r1,πNE)) for each n ∈ N . To
prove that rNE is an optimal solution to problem (21), let
α∗ =

∑
n∈N (πNE

µ(n+1)−π
NE
µ(n+2))+

∑
n∈N α

NE
n =

∑
n∈N α

NE
n ,

and let β∗ =
∑
n∈N β

NE
n . Then, we have (r∗ = rNE, α∗, β∗)

satisfies the KKT conditions in (22).

C. Proof for Lemma 2

The saddle point of L(r,λ), denoted by (r∗,λ∗), satisfies
the KKT conditions of problem (15) as follows:

∂Un(r∗n)

∂r∗n
− ∂Cn(f?n(r∗n), r∗n)

∂r∗n
−
(
λ∗µ(n+2) − λ

∗
µ(n+1)

)
+ α̃∗n − β̃∗n = 0, n ∈ N , (24a)

r∗µ(n−2) = r∗µ(n−1), r
∗
n ≥ 0, r∗n ≤ r̄, n ∈ N , (24b)

α̃∗n ≥ 0, β̃∗n ≥ 0, α̃∗nr
∗
n = 0, β̃∗n(r∗n− r̄) = 0, n ∈ N , (24c)

where α̃∗n and β̃∗n are the Lagrange multipliers corresponding
to constraints rn ≥ 0 and rn ≤ r̄ for n ∈ N , respectively. Let
γNE
n = r∗n, πNE

n = λ∗n, αNE
n = α̃∗n, and βNE

n = β̃∗n for n ∈ N .
Then, (γNE,πNE,αNE,βNE) leads to (23), i.e., (γNE,πNE) is
an NE of Game 1.

8We use α and β to refer to the Lagrange multipliers in this appendix to
distinguish them from the Lagrange multipliers in Section IV.
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