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Abstract—Donation-based markets are becoming increasingly
popular in our daily life. One example is the online streaming
platform Twitch, which attracts millions of users on a daily basis.
On such platforms, firms provide services to customers without
mandatory charge, and customers voluntarily donate money to
the firms. The donations are split between the firms and the
platform with a fixed pre-agreed fraction. To gain insights into
the operation and optimization of such platforms, we formulate
a two-stage game to study the platform’s and firms’ behaviors.
In Stage I, the platform decides a donation-split-fraction (DSF),
which corresponds to the fraction of donations kept by the firms.
In Stage II, firms decide whether to participate in the platform
and how to choose their service attributes considering the DSF
as well as the preferences of firms and customers. Analyzing
such a two-stage game directly is challenging, as the Stage II
problem corresponds to the multi-firm extension of the Hotelling
model and is still an open problem. To resolve this issue, we
approximate the large number of firms as non-atomic decision
makers, where a single firm’s strategy choice does not affect the
payoffs of the firm population. Under such an approximation,
we prove that the Stage II problem is a potential game. We
further show that at the equilibrium, a larger DSF leads to
more firm participations and a better match to the customers’
preferences. The stage I problem, nevertheless, is a non-convex
optimization problem that does not render a closed-form solution.
To gain insights, we derive the upper-bound and lower-bound of
the optimal DSF solution. The bounds suggest that the platform
should increase its DSF if the customers’ donation sensitivity to
the number of firms increases or if the firms’ opportunity cost
for participation increases. Finally, we collect data from Twitch
and demonstrate the results of the two-stage model with a case
study. Our simulation results suggest that under our data and
model settings, there exists a significant potential for Twitch to
improve its payoff, by setting the DSF to 0.38, instead of 0.71 as
in Twitch’s current practice.

I. INTRODUCTION

A. Background and Motivation

Recently, many online platforms have chosen to implement

a donation-based market between two groups of users: firms

who provide services without mandatory charges, and cus-

tomers who enjoy the services and voluntarily donate to the

firms. The customers donate mainly due to their desires of

being acknowledged on the platforms (to gain community

presents) and supporting the firms for future service provisions
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(a) (b)

Fig. 1. Mismatch of the concurrent numbers of streamers and viewers in
Twitch: (a) game attribute; (b) time attribute.

[1]. These donations are split between the firms and the

platform with a fixed donation-split-fraction (DSF), which

corresponds to the fraction of donations kept by the firms.

There are many examples of donation-based markets, such

as several live streaming platforms, including Twitch1. In live

streaming platforms, streamers (corresponding to firms) live

stream their videos of game play, while viewers (correspond-

ing to customers) watch these live streaming videos for free.

The viewers can donate to the streamers, and a fixed fraction of

the donations will be kept by the streamers (e.g., 1/1.4 ≈ 0.71
on Twitch). The total donation volume on similar types of

platforms is huge. In 2017, a total of $101 million dollars

of donations were received by top live streaming platforms

including Twitch, YouTube Live, Mixer, Facebook Live, and

Periscope [2]. Other donation-based market examples are

blogging platforms (e.g., WeChat Subscription) and online

music platforms (e.g., Songtradr).2

The donation-based feature of these markets brings two

unique questions as follows:

First, from the firms’ point of view, how should they decide
their service attributes (e.g., in a live streaming platform, what
game to broadcast at what time) given a fixed DSF? The firms

and customers may have different preferences over the service

attributes, and firms’ choices (which can be different from

1Twitch (https://www.twitch.tv/) is the largest live streaming platform in
the US [2]. It has more than 15 million unique daily visitors and 2 million
unique monthly streamers, according to its annual report of 2017 [3].

2WeChat Subscription (https://mp.weixin.qq.com/?lang=en US) is a blog-
ging platform for individual article publishing. Songtradr (https://www.
songtradr.com/) is a music platform for independent musicians.
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their own preferences) will affect the competition levels among

firms and the satisfactions of the customers.

As an example, Figure 1 illustrates the mismatch of the

numbers of streamers and viewers in Twitch.3 The subfigures

(a) and (b) correspond to game and time attributes, respec-

tively. Specifically, Figure 1(a) shows the average concurrent

numbers of streamers and viewers (over a two-week data

collection period) of different games. Some games with a

small number of viewers have a large number of streamers

(e.g., {3} Fortnite), which implies that these streamers may

improve their payoffs by switching to stream other games with

less competitors. Figure 1(b) shows the corresponding average

numbers (over the same two-week period) of the game League
of Legends at different times. Similarly, some streamers may

increase their payoffs by changing their streaming time (e.g.,

from 3am to 11am in Coordinated Universal Time)

Second, from the platform’s point of view, how should it
set the DSF to maximize its payoff? A higher DSF leads to

a smaller per-donation revenue to the platform. On the other

hand, it can increase the incentive for the firms to participate

in the platform and better match the customers’ preferences

to induce more donations.

Despite the fact that the donation-based market has been

embraced by top companies (e.g., YouTube and Facebook) and

attracts millions of firms and customers, there does not exist

a good understanding regarding the answers of the above two

key questions. This motivates the research in this paper.

B. Solution Approach and Contribution

For the sake of concreteness, we focus on the example of the

live streaming platform in this paper.4 The modeling approach

and analysis techniques are applicable to other donation-based

markets as well. The platform first announces the DSF, then

each firm decides whether to participate and what service

attribute to choose (for example, at what time to stream). We

model such a sequential decision process by using a two-stage

game. This game is challenging to solve due to several reasons.

First, consider the Stage II problem where firms make their

participation and service attribute selection decisions. This is

an extended version of the Hotelling model [4] with many

firms, which is still an open problem [5]. To resolve this issue,

we consider a large population approximation where each

firm is non-atomic, i.e., a single firm’s strategy choice does

not affect the entire market. This approximation is reasonable

given the large number of firms (and customers) on these

platforms in practice. The remaining difficulty is to compute

the asymmetric equilibrium, where firms of the same prefer-

ence may choose different strategies at the equilibrium. This

is significant more difficult than focusing on the symmetric

equilibrium only as in many previous works [6]. Despite these

difficulties, we are able to prove that the Stage II game is

3Figure 1 is based on the stream data that we collected from Twitch. The
data is collected every 15 minutes from Nov. 05 to Nov. 20, 2017.

4We will use the pair of words “streamer” and “firm” and the pair of words
“viewer” and “customer” interchangeably in this paper.

a potential game [7], based on which we derive the game

equilibria and corresponding equilibrium features.
Next, we consider the Stage I problem where the platform

optimizes the value of DSF. The problem is non-convex and

hence is challenging to solve. By exploiting the structure of

the problem, we derive the upper-bound and lower-bound of

the optimal solution and obtain practical insights.
Our key contributions are listed as follows:

• Donation-Based Market Formulation: To the best of our

knowledge, this is the first paper that presents a two-stage

model of a donation-based market. We characterize how

the platform optimizes its DSF, and how the firms decide

whether to participate and choose their service attributes.

• Stage II Equilibrium of Firm Behavior: For the Stage

II problem, we consider a large population approxima-

tion with non-atomic firms. We prove that the Stage II

problem is a potential game and derive the asymmetric

equilibria. We show that a larger DSF leads to more

firm participations and a better match to the customers’

preferences at the equilibrium.

• Stage I Equilibrium of Platform Behavior: For the Stage

I non-convex optimization problem, we derive the upper-

and lower-bound of the optimal solution, which reflects

how the optimal DSF changes with system parameters. As

the bounds suggest, the platform should increase its DSF

if the customers’ donation sensitivity to the number of

firms increases or if the firms’ opportunity cost increases.

• A Case Study based on Empirical Twitch Data: We

collect two weeks’ data about streamers’ and viewers’

behaviors from the Twitch platform. Based on the data,

we demonstrate how to compute the platform’s optimal

DSF without knowing the preferences of the firms and

customers. The study suggests that under our data and

model settings, Twitch should set the DSF to be 0.38,

rather than the 0.71 in reality, to maximize its revenue.

The rest of this paper is organized as follows. We review

the existing works in Section II. We propose the system model

in Section III. In Sections IV and V, we analyze the equilibria

of Stages II and I, respectively. We perform the case study

with Twitch data in Section VI, and conclude in Section VII.

II. LITERATURE REVIEW

A. Donation-Based Market
Most of the prior works on donation-based markets studied

the customers’ donation behaviors. Hu et al. [8] conducted

an online survey to study why customers visit live streaming

platforms, where some of the reasons (such as cognitive

communion and resonant contagion) also explain their dona-

tion behaviors. Scheibe et al. [1] conducted surveys to study

why customers donate, and the major reasons include the

customers’ desires of being acknowledged on the platforms

and supporting the firms for future service provisions. Zhu

et al. [9] analyzed the data from Douyu (a live streaming

platform in China) to investigate the customers’ donation

behaviors. Tang et al. [10] used an all-paid auction framework

to understand the customers’ donation behaviors.
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Fig. 2. System model: an example with time attribute.

Through data analysis, some papers identified the impor-

tance of motivating firm service selection behaviors. For

example, Jia et al. [11] discussed the firms’ and customers’

different preferences on live streams, and mentioned that the

platform has to motivate firms to participate and match the

customers’ preferences to increase the platform’s revenue.

However, as far as we know, there is no paper analytically

characterizing how the platform should motivate the firms’

service selections. As a first step, this work studies the plat-

form’s optimal DSF decision and analyzes the firms’ service

selections in these donation-based markets.

B. Hotelling Model

The Stage II of the two-stage game can be regarded as

an extended version of the Hotelling model [4], [12]. In

the classical Hotelling model, customers are distributed along

an interval (representing their preferences over an service

attribute), and two firms decide their locations over the interval

to maximize their own payoffs, respectively. The survey [5]

presented recent extensions of the Hotelling model, such as

different service attribute (e.g., over a line or a circle) and dif-

ferent firm decision process (e.g., simultaneous or sequential).

The Stage II model in our paper is related to a Hotelling

model with a larger number of firms. This still remains as

an open problem in literature [5]. Economides [13] studied a

multi-firm model on the interval without discussing the firm

equilibria. Brenner [14] theoretically studied a three-firm case,

and empirically studied four- to nine-firm cases. Behringer et
al. [15] theoretically analyzed a four-firm case. However, the

analysis in [14] and [15] cannot be easily generalized to the

case of an arbitrary number of firms.

We circumvent the difficulty by approximating the problem

with a large number of non-atomic firms, where a single

firm’s strategy choice does not affect the market. Schmeidler

[16] first analyzed a game with non-atomic players, and

proved the existence of Nash equilibrium (without deriving

the equilibrium). However, we are not aware of papers that

explicitly characterizing the equilibrium of a general Hotelling

model with non-atomic firms. Based on the reformulated

model, we derive the asymmetric equilibria with non-atomic

players, which is a challenging problem according to [6].

III. SYSTEM MODEL

In this section, we first introduce the system setting, and

then define the two-stage game.

A. System Setting

We first introduce the platform model and the service

attribute. Then, we introduce the firm and customer models.

1) Platform: We consider a platform with a large number

non-atomic firms and non-atomic customers, where the firm

and customer sets are continuum. The large population setting

is reasonable in practice, e.g., Twitch often has thousands of

streamers and millions of viewers on average (see Figure 1).

The firms provide services without mandatory charge, and

the customers enjoy the services and voluntarily donate to the

firms. The donation will be shared between the firms and the

platform with a fixed fraction. As the firms and customers are

non-atomic, we will consider the aggregate donations from the

customers and the average donations earned by each firm, with

details discussed in Section III-A4.

2) Service Attribute: For simplicity, we only consider one

service attribute in this paper. For example, on a live game

streaming platform, the attribute can be the streaming time or

the type of game to be streamed.

Similar as in the classical Hotelling model [4], we represent

the attribute using a unit line segment of [0, 1]. We label the

possible values of the attribute, named as locations, by the set

of L = {0, 1, 2, ..., L}, where the sth location is located at ls ∈
[0, 1] along the interval. Figure 2 shows an example, where we

have a location set L = {0, 1, ..., 23}, each representing an

hour of the day. Firms and customers are distributed along the

interval based on their preferences, and the firms can decide

their stream times over the set L.

3) Non-Atomic Firms: A firm has a preferred location (i.e.,

value of the attribute). Let Ns denote the number of the

firms preferring the location s ∈ L. A firm can choose an

attribute that is different from his preference, so as to avoid

competitions with other firms or encounter more customers.

4) Non-Atomic Customers: A customer has a preferred

location. Let Ms denote the number of customers preferring

the location s ∈ L. In this paper we focus on studying

the decision of the firms. For simplicity, we assume that a

customer always choose his preferred attribute.

A customer will donate to the firms whose selected at-

tributes are the same as the customer’s own preference. Instead

of characterizing the donation behavior of each customer, we

consider an aggregate donation function D(M,N), depending

on the number of firms N (according to the firms’ choices)

and the number of customers M (according to the customers’

preferences) at one particular location. We assume that the do-

nation function D(M,N) satisfies the following assumption.

Assumption 1 (Donation Function). Function D(M,N) (i) is
strictly increasing in M , (ii) is strictly increasing and concave
in N , and (iii) has an elasticity that is smaller than one, i.e.,

ηM (N) =
[D(M,N)]N ·N

D(M,N)
≤ 1, ∀M,N ∈ R+, (1)

where [D(M,N)]N denotes the partial derivative of D(M,N)
with respect to N .
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Fig. 3. Two-stage game.

Note that we do not characterize the customer donation

behaviors directly, while we use a donation function D(M,N)
to represent the resulting donations. As a result, the analyses

in this paper apply for any customer donation behavior as long

as it induces a donation function in the form of D(M,N) that

satisfies Assumption 1. Specifically, in Assumption 1, point

(i) implies that as the number of customers increases, the total

donation strictly increases. Point (ii) implies that as the number

of firms increases, the total donation strictly increases but the

marginal change decreases. In live streaming platforms, for

example, more streamers implies a higher probability that a

viewer can find his satisfactory streams so that he will donate

more, while the probability of finding a satisfactory stream is

concave in the number of streamers. Point (iii) on elasticity

can be written as follows:

1 ≥ [D(M,N)]N ·N
D(M,N)

≈ %ΔD(M,N)

%ΔN
, ∀M,N ∈ R+. (2)

This implies that a unit percentage increase in the number of

firms leads to a percentage donation increase less than one.

Because of this, the firms tend to avoid competition (e.g., a

streamer would prefer to stream at a time when there are more

viewers and less streamers).

B. Two-Stage Game

1) Two-Stage Game: Let us take the live streaming platform

as an example. The platform first announces the DSF, then

each streamer decides whether to participate and what attribute

to choose. Inspired by such a sequential decision process, we

model the donation-based market using a two-stage game, as

shown in Figure 3. Next, we explain the two stages in details.

In Stage I, the platform decides the DSF α ∈ [0, 1], i.e., the

fraction of donations kept by firms.

In Stage II, firms decide whether to participate and what

will be their location choices (if they choose to participate).

In this paper, we use superscripts to denote preferences and

subscripts to denote decisions. Let xp
s denote the number

of firms preferring location p ∈ L and choosing location

s ∈ L. Note that we allow asymmetric equilibrium, hence xp
s

maybe positive for multiple values of s. Due to the assumption

of non-atomic firms, the xp
s can take a non-integer value.

The strategies of the firms preferring location p ∈ L is

characterized by xp = (xp
s , ∀s ∈ L). Let x = (xp

s , ∀p, s ∈ L)
denote the strategies of all the firms.

In addition, any strategy x should satisfy the constraint that

for the firms preferring any location p ∈ L, the total number

of participating firms should be no larger than the total number

of firms, i.e.,
∑

s∈L xp
s ≤ Np, ∀p ∈ L. For presentation

TABLE I
KEY NOTATIONS.

Parameters
Ns The number of firms preferring location s ∈ L
Ms The number of customers preferring location s ∈ L
V A firm’s opportunity cost for participation
W A firm’s deviation cost per unit distance

Decisions & Decision-Related Notations
α Platform’s DSF decision
xp
s The number of firms preferring p ∈ L and choosing s ∈ L

xp xp = (xp
s , ∀s ∈ L), the strategies of firms preferring p ∈ L

x x = (xp
s ,∀p, s ∈ L), the strategies of all firms

N̂s(x) N̂s(x) =
∑

p∈L xp
s , the total number of firms choosing

location s ∈ L under strategy x

simplicity, let N̂s(x) �
∑

p∈L xp
s be the aggregate number

of firms choosing location s under a strategy x.

2) Payoff Functions: Given the platform strategy α and the

firm strategy x, we define their payoffs as follows.

Platform’s Payoff: The platform’s payoff equals 1 − α
fraction of the total donations from customers at all locations:

G(α,x) = (1− α)
∑
s∈L

D(Ms, N̂s(x)). (3)

A Firm’s Payoff: If a firm does not participate in the

platform, it gains a zero payoff.5

If a firm preferring location p ∈ L participates and chooses

a location s ∈ L, its payoff equals the difference between its

donation gain and its cost, i.e.,

F p
s (α,x) = α×U(Ms, N̂s(x))−Cp

s (V,W ), ∀p, s ∈ L. (4)

Specifically, the donation gain is the DSF α multiplied by the

average donation that a firm can gain at the location s, where

the average donation is defined as

U(Ms, N̂s(x)) =
D(Ms, N̂s(x))

N̂s(x)
, (5)

where U(Ms, N̂s(x)) is increasing in Ms and decreasing in

N̂s(x) according to Assumption 1. This shows that a firm

gains a higher donation gain at a location with more customers

or less firms. The cost contains a fixed opportunity cost V and

a distance-associated deviation cost W × (lp − ls)
2:

Cp
s (V,W ) = V +W × (lp − ls)

2. (6)

The quadratic form of the deviation cost is used to characterize

the firms’ increasing marginal costs on the deviation, similar

as in the original Hotelling model [4]. This shows that a firm

consumes a higher cost if it has a higher opportunity cost or

it chooses a longer deviation.

Table I summarizes the key notations of this paper. We

solve the two-stage game using backward induction. Next, we

analyze the Stage II equilibrium in Section IV and the Stage

I equilibrium in Section V.

5If the non-participation induces a positive payoff, we can normalize it to
zero by adjusting the value of the opportunity cost V defined in (6).
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IV. STAGE II: FIRM LOCATION EQUILIBRIUM

In Stage II, given any DSF α, we analyze the firm location

game as follows.

Definition 1 (Stage II Firm Location Game).
• Players: all the firms;
• Strategies: each firm preferring a location p ∈ L selects a

location s ∈ L, and the aggregate strategy is represented
by x = (xp

s , ∀p, s ∈ L);
• Payoffs: F p

s (α,x) for each firm preferring a location p ∈
L and choosing a location s ∈ L.

The key objective in this section is to derive the firm

location equilibrium, under which firms have no incentive to

change their location choices. We first define the equilibrium,

and then derive the equilibrium and its corresponding features.

A. Equilibrium Definition
We first define the support correspondence. Then, we define

a firm’s best response and the firm location equilibrium based

on such a correspondence.
1) Support Correspondence: We define a correspondence

that outputs a vector’s positive elements.

Definition 2 (Support Correspondence). For a vector z ∈
R

1×L
+ , the support correspondence S(z) = {s ∈ L : zs > 0}

is the set of indexes corresponding to positive elements in z.

For example, if z = {3, 0, 2, 0}, then S(z) = {1, 3}. Con-

sequently, for any strategy xp, the correspondence S(xp) =
{s ∈ L : xp

s > 0} indicates the set of locations chosen by the

firms preferring location p under the strategy xp.
2) Best Response: We now define a firm’s best response.
For a firm preferring location p ∈ L, its best response

location choice is the set of locations that induce the maximum

firm payoff, i.e.,

BRp(α,x) = argmax
s∈L

F p
s (α,x). (7)

Normally, the best response is defined as a correspondence

of all other firms’ strategies excluding the firm its own’s.

However, due to the non-atomic firm assumption, the change

of one firm’s strategy does not affect the aggregate strategies

of all the firms [17]. This allows us to directly write the best

response as a correspondence of x.
Based on a single firm’s best response, we define a corre-

spondence representing the aggregate best response of all the

firms preferring location p ∈ L:

ABRp(α,x) = {z ∈ R
1×L
+ :

S(z) ⊂ BRp(α,x),
∑
s∈L

zs ≤ Np}. (8)

Specifically, the aggregate best response for the firms prefer-

ring a location p is any vector z such that all its elements

(locations) with positive firm numbers belong to BRp(α,x),
i.e., S(z) ⊂ BRp(α,x), and its element sum is no larger

that the total number of firms preferring location p, i.e.,∑
s∈L zs ≤ Np. Notice that we allow firms with the same

preference to choose different locations in their best responses.

3) Definition of Firm Location Equilibrium: Firm location

equilibrium is defined as the fixed point of the best responses.

Definition 3 (Firm Location Equilibrium). Given any α,
firm location strategy x is an equilibrium if and only if the
aggregate strategy of each firm population preferring the same
location p belongs to their aggregate best response under x,
i,e., xp ∈ ABRp(α,x), ∀p ∈ L.

An interpretation of this equilibrium is that a strategy x is an

equilibrium if and only if the firms’ aggregate best response

(i.e., the updated firm strategies under their best responses)

can recover this strategy distribution x. In other words, under

the firm location equilibrium, no firm will change its location

choice according to its best response.

B. Deriving the Firm Location Equilibrium

Directly computing the equilibrium based on the best re-

sponse is challenging, due to the challenge of computing the

fixed point of the multi-dimensional best response mapping of

an L×L-dimensional vector x = {xp
s , ∀p, s ∈ L}. Instead of

directly deriving the equilibrium distribution, we first prove

that the Stage II game is a potential game. Under this, all

the firms’ payoffs can be related to the same function, i.e.,

the potential function, which allows us to characterize the

equilibrium by solving an optimization problem. Then, we

derive the firm location equilibrium.

The key proof of a potential game is to identify a potential

function. However, there does not exist a general methodology

for doing this, and we have to identify the potential function

by exploiting the specific structure of the problem.

Lemma 1 (Stage II Game as Potential Game). Given any
α, the Stage II game is a potential game with non-atomic
players6, which has a potential function

f(α,x) = α×
∑
s∈L

∫ N̂s(x)

0

D(Ms, z)

z
dz

− V ×
∑
s∈L

∑
p∈L

xp
s −W ×

∑
s∈L

∑
p∈L

xp
s(lp − ls)

2. (9)

Proof. According to [7], the Stage II game is a potential game

if there is a potential function f(α,x) such that the following

equality always holds:

∂f(α,x)

∂xp
s

= F p
s (α,x), ∀s, p ∈ L. (10)

By checking the first-order partial derivative of (9), we can

show that the Stage II game is a potential game, and f(α,x)
is the potential function.

Showing that the game is a potential game allows us to

characterize the Stage II firm location equilibrium by solving

an optimization problem, which is easier than finding the fixed

point of the firms’ best responses. Formally,

6A potential game with non-atomic players is different from that with
atomic players. For detailed discussions, see [7].
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Theorem 1 (Firm Location Equilibrium). The set of firm
location equilibria of the Stage II game is the set of global
optimal solutions to the following optimization problem:

x∗(α) � arg maximize
x≥0

f(α,x) (11a)

subject to
∑

s∈L xp
s ≤ Np, ∀p ∈ L. (11b)

(STAGE II-NE)

More specifically, a vector x is an equilibrium, i.e., x ∈
x∗(α), if and only if there exists a pair of μ ∈ R

1×L and
λ ∈ R

L×L such that the following constraints are satisfied:

F p
s (α,x) = μp − λp

s , ∀p, s, (12a)

λp
sx

p
s = 0, λp

s ≥ 0, xp
s ≥ 0, ∀p, s, (12b)

(
∑

s∈L xp
s −Np)μp = 0, μp ≥ 0, ∀p, (12c)∑

s∈L xp
s ≤ Np, ∀p. (12d)

(STAGE II-NE-CONDITION)

Proof. As proved in Lemma 1, this game is a potential game,

so its equilibria are the solutions to Problem (STAGE II-NE)

[7], i.e., maximizing the potential function f(α,x) under firm

population constraints (i.e., among the firms who preferring

any location p ∈ L, the total number of participating firms

should be no large than the total number of firms). On the

other hand, the conditions (STAGE II-NE-CONDITION) are

essentially the KKT conditions of Problem (STAGE II-NE).

To show that (STAGE II-NE-CONDITION) are the conditions

for equilibria, we have to show that the KKT conditions of

Problem (STAGE II-NE) is necessary and sufficient conditions

to its global optimal solutions. This is true because the f(α,x)
in (11a) is concave (by checking its Hessian Matrix), and the

constraint (11b) fulfills the Slater’s condition.

Note that the firm location equilibrium (derived from The-

orem 1) may not be unique under a given α. Nevertheless, we

can show that any of the equilibria leads to the same sets of

firms’ payoffs and the same platform’s payoff,

Corollary 1 (Unique Equilibrium Payoffs). Under any given
α, any equilibrium of the Stage II game induces the same set of
firms’ payoffs, i.e., F p

s (α,x) = F p
s (α), ∀p, s ∈ L,x ∈ x∗(α),

and the same platform’s payoff, i.e., G(α,x) = G(α), ∀x ∈
x∗(α).

Specifically, the dual variables of Problem (STAGE II-NE),

i.e., μ and λ, are unique, because the constraints (11b) are

linearly independent [18]. Hence, according to (12a), under a

fixed α, any of the equilibria induces the same set of firms’

payoffs, i.e., F p
s (α,x) = F p

s (α), ∀p, s ∈ L,x ∈ x∗(α). Based

on this, we can show that under a fixed α, any of the equilibria

induces the same set of aggregate number of firms at all

locations, i.e., N̂s(x) = Ñs(α), ∀s ∈ L,x ∈ x∗(α). This is

because the mapping from the firms’ payoffs (defined in (4))

to aggregate number of firms is a one-to-one correspondence,

due to the strictly increasing donation function in the number

of firms as in Assumption 1. Hence, from the platform’s point
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Fig. 4. The impact of α on the firm location equilibrium.

of view, given any α, it achieves the same payoff under any of

the firm location equilibria in Stage II, as its payoff (defined

in (3)) only depends on the aggregate number of firms N̂s(x).
In the rest of this paper, let G(α) denote the platform’s

payoff under the firm location equilibria given an α.

C. Impact of α on Firm Location Equilibrium

Based on the conditions in Theorem 1, we show how the

firm location equilibrium changes with the DSF α. A key

insight is that a larger α leads to more firm participations

and a better match to the customers’ preferences.

Given any opportunity cost V , deviation cost W , firm

preference Ns, ∀s ∈ L, and customer preference Ms, ∀s ∈ L,

the firm location equilibrium changes with α as follows.

Proposition 1 (Participation and Preference Matching). The
ratios W/α and V/α determine the Stage II equilibria, i.e.,

• V/α → 0: full participation,
∑

s∈L xp
s = Np, ∀p ∈ L;

• V/α → ∞: no participation,
∑

s∈L xp
s = 0, ∀p ∈ L;

• W/α → 0: full preference matching7,

Us(N̂s(x)) =
D(Ms, N̂s(x))

N̂s(x)
= Ũ , ∀s ∈ L, (13)

where Ũ is a positive value;
• W/α → ∞: no active matching,

∑
s∈L/px

p
s=0, ∀p ∈ L.

Specifically, the potential function (9) is a weighted sum of

three functions with the corresponding weights as α, V , and

W , respectively. As these weights change, the firm location

equilibrium (the optimal solution to Problem (STAGE II-NE))

changes accordingly as in Proposition 1.

Figure 4 shows the impact of α under two choices of

(W,V ). Here we choose the donation function D(M,N) =
M

√
N . The x-axis represents the location, and the y-axis cor-

responds to the number of firms or customers. The “Firm” and

“Customer” curves correspond to the firms’ and customers’

location preferences, respectively. The curves labeled with

α = 0.1, 0.2, and 0.3 are the firm location equilibrium under

the corresponding values of α.

Figure 4 (a) shows the results with W = 0 and V = 1, under

which firms always fully match the customers’ preferences due

to the zero deviation cost W . In this case, under any α, firms

7We refer this case as “full preference matching”, because the firms gain

the same average donations, i.e., Ũ , at all locations (under the deviation), so
that further deviation cannot increase their payoffs.
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are distributed in a shape that is similar as the customers’ pref-

erences do. As α increases, the firm participation increases,

i.e., the total number of participating firms increases. Figure

4 (b) shows the result with W = 1 and V = 0, under which

firms always fully participate due to the zero opportunity cost

V . In this case, as α increases, the firm matching increases,

i.e., firms’ location choices deviate from firms’ preferences

(i.e., the blue dash line) to match customers’ preferences (i.e.,

the red dot line). To sum up, a larger α leads to more firm

participation and a better match to the customers’ preferences.

V. STAGE I: PLATFORM DSF DECISION

In Stage I, the platform chooses the DSF α to maximize

its payoff under the firm location equilibrium. We first present

the platform’s payoff optimization problem. As the problem

is non-convex and cannot be solved in closed-form, we derive

the upper-bound and lower-bound of the optimal solution, and

propose an exhaustive searching method.

A. Platform Profit Maximization Problem

In Stage I, the platform selects the optimal fraction α∗ that

maximizes its payoff. Formally,

α∗ � arg max
α∈[0,1]

G(α) (STAGE I-NE)

Here G(α) is the platform’s payoff under the firm location

equilibrium given an α, as in Corollary 1 in Section IV-B.

Problem (STAGE I-NE) is a non-convex optimization prob-

lem due to the non-convex objective function G(α). Specif-

ically, the objective function G(α) is a piece-wise function

that is not always differentiable. In addition, this piece-wise

function may not be a quasi-concave function, so we cannot

use an effective bisection algorithm [19] to solve the problem.

Hence, it is difficult to derive the closed-form optimal solution

to Problem (STAGE I-NE).

B. Optimal Solution Bounds and Approximate Solution

Despite the non-convexity, we can characterize the upper-

and lower-bound of the optimal solution to Problem (STAGE I-

NE). Within the bounds, we can then implement an exhaustive

searching to obtain an approximate optimal solution.
1) Upper-Bound and Lower-Bound of α∗: The upper-bound

and lower-bound of α∗ are as follows:

Proposition 2 (Upper-Bound and Lower-Bound of α∗). The
optimal α∗ is upper-bounded by α that satisfies

α = max{ηMp(xp), ∀p ∈ L}, (14)

where xp = {x|[D(Mp, x)]x = V } for all p ∈ L, and ηM (N)
is defined in (1).

The optimal α∗ is lower-bounded by α as follows

α = min

{
V

max{D(Mp,Np)
Np , ∀p ∈ L}

, α̂

}
. (15)

where α̂ is defined as∑
s∈L

D(Ms, xs(α̂))

1− ηMs(xs(α̂))

(
ηMs(xs(α̂))

α̂
− 1

)
= 0. (16)

Specifically, the upper-bound α is characterized by the elas-

ticity of the customers’ donations: when the elasticity is larger,

the customers’ donations are more sensitive to the number

of firms, so the platform should increase α∗ to incentivize

firms to participate and satisfy customers’ preferences. The

lower-bound α is characterized by how hard it is to motivate

participation: if either the opportunity cost V is larger or the

max{D(Mp, Np)/Np, ∀p ∈ L} is smaller,8 the lower bound

is larger (which means a larger incentive is needed to motivate

firm participation). When the participation motivation is quite

hard (i.e., when α̂ is effective in (15)), the platform maintains

a certain level of participation motivation (i.e., α̂).

2) Searching Method: The last step of computing the opti-

mal DSF is to search in the interval of [α, α]. Specifically, we

divide the internal into K segments, and the approximate opti-

mal solution is α∗
K = argmax{G(α)|α ∈ {α+(α−α)k/(K−

1), k = 0, 1, ...,K−1}}. Let α∗ = argmaxα∈[0,1] G(α) be the

actual optimal solution. The gap |G(α∗
K)−G(α∗)| is bounded:

Lemma 2 (Optimal Solution Approximation). Given any
ε, there always exists a threshold K such that |G(α∗

K) −
G(α∗)| ≤ ε for any K ≥ K.

The proof of Lemma 2 relies on applying the Maximum

Theorem [20] to show the continuity of function G(α).

VI. CASE STUDY WITH DATA COLLECTED FROM TWITCH

We collect real-world data from Twitch platform and con-

duct analysis based on our model accordingly. The data is

collected from Twitch every 15 minutes from Nov. 05 to

Nov. 20, 2017. The information contains user id, game id,

streamer type, viewer count, started at, and language.

In this case study, we demonstrate how to compute the

platform’s optimal DSF with only the firms’ and customers’

actual behaviors data (instead of their preferences, which are

usually private information). Based on the case study, we

also suggest that under the collected data and our model

settings, Twitch should significantly reduce the value of DSF

(comparing with its current practice) to enhance its payoff.

We focus on the game League of Legends, and consider the

streaming time as the service attribute. To better capture the

periodic feature of the time attribute and the streamers’ multi-

ple time slots streams, we propose a new attribute model, i.e.,

a circular model with multiple location coverage. Although

this model is different (and more complicated) from the unit

length interval model discussed in Section III, our modeling

and analysis are still applicable (detailed discussions in VI-A).

We first discuss the system setting, then explain how to

map from the firms’ choices of streaming time (observable

from the collected data) to their time preferences (not directly

observable). Finally, we derive the optimal DSF.

8Intuitively, a smaller max{D(Mp, Np)/Np, ∀p ∈ L} implies a smaller
average donation after full participation, under which it is harder to motivate
the full participation.
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A. System Setting

1) New Attribute Model: The model here is different from

the previous model (in Section III) in two aspects. (i) Circular

model: the attributes are distributed over a circle (with no ex-

treme values) instead of over a line interval (with two extreme

values). (ii) Multiple location coverage: once a firm selects a

location, its service can cover several locations (starting from

the selected one). Let Ls ⊂ L denote the set of locations

that a firm can cover if it selects a location s ∈ L. Figure 5

illustrates such a model, where the circle represents 24 hours in

a day. More specifically, the circle contains 96 locations, so the

distance between each pair of adjacent locations corresponds

to 15 minutes (which corresponds to the time interval between

two consecutive data collections in our dataset). We assume

that each streamer broadcasts for an consecutive period of 2

hours, which corresponds to the average broadcasting time of

streamers in League of Legends. For example, when a streamer

selects 1am (location 4), he will continue to serve until 3am

(location 12), represented by the shaded area in Figure 5, i.e.,

L4 = {4, 5, ..., 12}.

Under this new attribute model, if a firm preferring location

p ∈ L participates and chooses a location s ∈ L, its payoff is

the difference between the donation gain over all the locations

in set Ls and its cost in the circular model, i.e.,

F̃ p
s (α,x) = α×∑

l∈Ls
U(M l, N̂l(x))− C̃p

s (V,W ), (17)

where the cost in the circular model C̃p
s (V,W ) is the sum of

the opportunity cost and the deviation cost that is associated

the shortest path along the circle, i.e.,

C̃p
s (V,W ) = V +W × (min{|lp − ls|, 1− |lp − ls|})2 . (18)

The firms’ non-participation payoffs and the platform’s payoff

are the same as those of the line model in Section III.

Under this new model, we can still prove that the Stage

II game is a potential game, just with a different and more

complicated potential function f̃(α,x).

Lemma 3 (Firm Location Equilibrium Under the New At-

tribute Model). Given any α, the Stage II game is a potential
game with non-atomic players, with a potential function

f̃(α,x) = α×
(∑

s∈L

∑
l∈Ls

∫ ∑
h∈L(l)

∑
p∈L xp

h

0

D(M l, z)

z × |L(l)|dz
)

−
∑
s∈L

∑
p∈L

xp
sC̃

p
s (V,W ), (19)

where L(l) � {h|l ∈ Lh} is the location strategy set that can
cover location l, and |L(l)| is the size of the set L(l).

The set of firm location equilibria of the Stage II game is
the set of global optimal solutions of the following problem:

x∗
cir(α) � arg maximize

x≥0
f̃(α,x), (20a)

subject to
∑

s∈L xp
s ≤ Np, ∀p ∈ L. (20b)

Accordingly, we can obtain a similar result as it in Corollary

1. That is, under given any fixed α, all Stage II equilibria lead
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Fig. 5. Firm model.
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Fig. 6. A fitting example.

to the same sets of firms’ payoffs and the same platform’s

payoff. Hence, in Stage I, we can compute the optimal DSF

by searching over an interval of α as in Section V-B2.

2) Donation Function: As Twitch does not provide dona-

tion information through API, we choose the donation function

according to paper [9], which analyzes the donation from

Douyu9. In [9], the donation to a live stream increases with

the number of viewers in the following manner:

[received donation per firm] = eb0([viewers per firm])b1 ,
(21)

where b0 = −1.17 and b1 = 0.6 based on empirical data.

Hence, we use the following donation function:

D(M,N) = eb0 (M/N)
b1 N, (22)

which is the per-firm donation eb0(M/N)b1 multiplied by the

number of firms. This D(M,N) satisfies Assumption 1.

3) Current Donation-Split-Fraction: On Twitch, viewers

purchase 100 bits (i.e., a virtual currency on Twitch) with

$1.4, while streamers can exchange 100 bits with $1. Hence,

α = 1/1.4 ≈ 0.71.

B. Mapping from Firm Distribution to Firm Preference

Before deriving the firms’ and platform’s equilibrium strate-

gies, we need to first estimate the firms’ preference locations

based on the firms’ and customers’ actual locations.

Specially, based on the known cumulative firm distribution

XC-EQ (i.e., how many firms serving customers at each location

in the dataset, assuming that these firms behave according

to the equilibrium in Lemma 3), we aim to estimate the

unknown actual firm preference distribution X PF (i.e., how

many firms prefer to start at each location). The consideration

of “cumulative” is due to fact that a streamer will cover

multiple locations. The estimated firm preference is denoted

by X̂ PF, based on which we can obtain the cumulative firm

(preference) distribution X̂C-PF (i.e., how many firms serving

customers at each location if all the firms start at their

preferring locations), and the cumulative firm (equilibrium)

distribution X̂C-EQ (which will be different from XC-EQ due to

the errors introduced in the estimation process). Each of the

vectors defined above has 96 elements, where the sth element

corresponds to the number of firms at location s.

We assume that the firm actual preference X PF follows a

sine function, i.e., the number of firms at a location l ∈ L is

9Douyu is one of the most popular live streaming platforms in China, and
it has a similar business model as Twitch.
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TABLE II
OPTIMAL DSF.

V \W 2 10 20 100 200 1000
0.2 0.08 0.09 0.08 0.07 0.07 0.07
1 0.32 0.31 0.30 0.28 0.28 0.28
2 0.39 0.38 0.38 0.40 0.40 0.40
4 0.40 0.40 0.40 0.40 0.40 0.40

S(l) = c1×sin(2πl+c2)+c3. This is because the lag plot of

XC-EQ follows a circular shape, which suggests that the XC-EQ

is in a sine function [21]. Moreover, we can verify through

simulation that a sine function preference X PF is likely to

output a sine function equilibrium XC-EQ.

To estimate X PF, the key is to estimate the set of parameters

(c1, c2, c3). We choose the parameters that minimize the root-

mean-square-error (RMSE) between the known cumulative

distribution XC-EQ and fitted cumulative distribution X̂C-EQ:

RMSE =

√∑
l∈L

(
XC-EQ

l − X̂C-EQ

l

)2

/L. (23)

Figure 6 shows the fitting result (under the parameters

(c1, c2, c3) that lead to the minimum RMSE).10 The “Fitted

(Equilibrium) X̂C-EQ” is the fitted cumulative firm distribution

in equilibrium, and the “Fitted (Preference) X̂C-PF” is the fitted

cumulative firm distribution when all the firms choose their

preferring locations. We can see that the streamers deviate

from “Fitted (Preference) X̂C-PF” to “Fitted (Equilibrium)

X̂C-EQ” to better match the viewers’ preferences distribution.

C. Deriving Optimal Donation-Split-Fraction

Based on the estimated X̂ PF, we derive the platform’s

optimal DSF based on Lemma 3 and the numerical search

mentioned in Section V-B2. Table II shows the optimal DSF

values under different possible values of V and W (as we do

not know the actual values). In this table, we use bold fonts

to represent the values corresponding to V = 2 and W = 10,

because this combination of parameters leads to the minimum

RMSE (defined in (23)) over all the possible values (hence is

most likely to be the one in reality).

Remark 1 (Optimal α∗). In Table II, the bold text suggests
that the optimal DSF should be α∗ = 0.38. Furthermore, all
the optimal DSF values under various V and W values are
significantly smaller than 0.71 chosen by Twitch.

VII. CONCLUSION

This paper studies the platform’s optimal donation-split-

fraction (DSF) choice and the firms’ equilibrium service

attribute selections in a donation-based market. Our analysis

shows that, regarding the firm service attribute selection, a

larger DSF leads to more firm participations and a better

match to the customers’ preferences. Regarding the platform’s

optimal DSF, we derive the upper-bound and lower-bound of

10The probability density function of the fitting residuals roughly follows a
normal distribution with zero mean. This implies that the residuals are random,
which suggests that our fitting model works well [21].

the optimal DSF. In addition, we perform a case study based

on the dataset from Twitch. Our analysis and simulation results

suggest that there exists a significant potential for Twitch to

improve its revenue, by setting the DSF to 0.38, instead of

0.71 as in Twitch’s current practice.

This work serves as a first step towards understanding the

operation and revenue management in donation-based market.

There are several potential interesting extensions. First, we can

further consider the strategic behaviors of the customers in

terms of their donations and attribute deviations. Second, it is

interesting to consider the non-equal donation sharing among

firms, to understand the different location selection behaviors

of the firms with different qualities.
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