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Abstract—Crowdsourced mobile video streaming enables near-
by mobile video users to aggregate their network resources to
improve the video streaming performance. However, users are
often selfish and may not be willing to cooperate without proper
incentives. Designing an incentive mechanism for such a scenario is
challenging due to the users’ asynchronous downloading behaviors
as well as their private valuations for multi-bitrate encoded videos.
In this work, we propose a multi-object multi-dimensional auction-
based incentive framework, through which users can download
multiple video segments with different bitrates for multiple nearby
users (and themselves). Based on this incentive framework, we
propose a Vickrey-score auction, which is the first multi-object
multi-dimensional auction that achieves both truthfulness and
efficiency. Simulations with real traces show that crowdsourced
mobile streaming outperforms noncooperative streaming by 48.6%
(on average) in terms of social welfare. We further implement
our proposed auction mechanism in a demostration system, and
show that the crowdsourced framework together with the auction
mechanism can substantially increase mobile user’s welfare and
video service stability.

I. INTRODUCTION

A. Background and Motivation

Mobile video traffic accounted for around 55% of global

mobile traffic in 2015 and is expected to grow at an annual

rate of 62% between 2015 and 2020 [1]. The increasing video

demand requires proper video scheduling methods to achieve

desirable user’s quality of experience (QoE) in mobile video

streaming. In wireless environments, however, different mobile

users can have very different video service requirements (e.g.,

high quality or low quality videos depending on the device

capabilities and the user preferences) and channel conditions

(e.g., 3G or 4G cellular links), which leads to challenges

for effective QoE provision. To exploit the heterogeneities

among users and deal with the potential mismatch of video

requirements and channel conditions at the individual user

level, we have proposed a crowdsourced mobile video streaming
(CMVS) model [2], [3], which enables nearby mobile users to

form cooperative groups and share their network resources for

more efficient video streaming.

Different from the video content sharing in device-to-device

(D2D) based [4]–[6] and peer-to-peer (P2P) based [7]–[9]
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Fig. 1. Crowdsourced Mobile Video Streaming.

streaming models, users in CMVS models share their cellular

network resources so that different users can watch different
videos. Different from aggregating multiple users’ bandwidth

for one user’s streaming in [10]–[12], CVMS aggregates mul-

tiple users’ bandwidth for all users’ video streaming needs,

enhancing the users’ QoE through proper network resource

allocations. Moreover, CMVS model is particularly suitable for

the adaptive bitrate (ABR) video streaming [13], a widely used

video streaming technology in HTTP networks. With ABR,

each video is partitioned into multiple video segments, and

each video segment is encoded at multiple bitrates. Video

users can choose the bitrate of each segment based on their

preferences and real-time network conditions. Hence, an ABR-

based video streaming provides more flexibility for cooperative

downloading in CMVS models.

Figure 1 shows an example of CMVS, where users {A, B,

C} watch different videos hosted by the corresponding servers.

User C does not have a cellular connection to the Internet, so

users A and B download the user C’s segments and forward to

user C. User A also downloads segments for user B, as she has

better downlink channel (4G) than user B (3G).

In practice, however, selfish users may not be willing to help

others unless they receive proper incentives (e.g., increased

online reputation or virtual currency). Designing an effective

incentive mechanism for CMVS is very challenging due to the

users’ asynchronous downloading behaviors as well as their pri-

vate valuations for multi-bitrate encoded video segments. First,

video scheduling in ABR is segment based instead of time-

slotted based, so it is challenging to schedule the downloading

cooperation among the users who request and download videos

at different times. Second, a user’s valuation for a segment

at a particular bitrate is his private information and can vary

over time. The diverse and varying private valuation introduces

difficulties in evaluating users’ contribution in CMVS and

determining the proper incentive levels.
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Fig. 2. Theoretical Framework Proposed in This Paper.

B. Solution Approach and Contribution

To handle the asynchronous operations and the users’ private

valuations, we propose an auction-based incentive mechanism

for CMVS.1 The mechanism is decentralized in nature: when

a user is ready to download new segments, she will initiate

an auction to decide for whom to download at what bitrate

with what price. In the auction, the downloader acts as the

auctioneer, and her nearby users (that request videos) act as

bidders, bidding for the segments downloading opportunities.

As the bidders’ bids and the auctioneer’s decision are based on

real-time network conditions, the mechanism is adaptive to the

dynamic wireless link capacities.

In classical auctions (e.g., [14]–[18]), a bidder submits a

single value indicating his willingness to pay. Such a single-

dimensional auction is not applicable in our CMVS model. This

is because video segments are encoded at multiple bitrates, so

a bidder needs to specify multi-dimensional information in the

bid, i.e., her intended bitrate and the price she is willing to

pay for such a bitrate. This motivates us to consider a multi-

dimensional auction [19].

However, most of existing works in multi-dimensional auc-

tion (e.g., [19]) are single-object auctions, where the auctioneer

allocates a single object in each auction. Such a single-object

allocation may induce unnecessary signaling overhead because

of the frequently initiated auctions, which can be a serious issue

in the real-time downloaded streaming. To handle this problem,

we propose a multi-object multi-dimensional (MOMD) auction

framework, which enables bidders to bid for multiple objects

(i.e., segments) with different bitrates in each auction. The

multi-object allocation introduces an additional dimension in

the bidding process, i.e., the quantity (the number of the

segments that a bidder desires in an auction), which is pref-

erential dependent of price [20].2 It has been shown in [21]

that designing a multi-dimensional auction with preferential

dependent dimensions is extremely difficult, and this turns out

to be the problem that we need to solve in this paper.

In this work, we first propose an MOMD auction framework

that induces truthful user valuation revelation. Within this

framework, we design the desired allocation rule and payment

rule, leading to a truthful Vickrey-score auction (Section IV).

By properly adjusting the score function, this Vickrey-score

can achieve either efficiency (under our proposed optimal

1Auction has been widely used in wireless networks due to its effectiveness
in dealing with the private information [14]–[18]. Moreover, an auction can
often be easily implemented without inducing too much additional latency in
the system. In our experiments over the demo system, the auction accounts for
a maximum additional latency of 1% of the total video time.

2By [20], a dimension x is preferentially dependent of dimension y if the
preference of x depends on the preference of y.

bitrate adaptation method) or sub-efficiency (under existing

bitrate adaptation methods such as buffer-based adaptation [22],

[23] and bandwidth-based adaptation [24]). Figure 2 illustrates

the theoretical framework proposed in this paper. Our key

contributions are summarized as follows:

• A General CMVS Model: We propose a multi-user CMVS

model that, as far as we know, generalizes the previous

crowdsourced models by allowing simultaneous multiple

segments allocation. We focus on the incentive mechanism

in such a cooperative model and propose an MOMD

auction framework to achieve the truthful user valuation

revelation and the efficient network resource allocation

through proper auction mechanism design.

• Truthful and Efficient Auction Design: Based on the

MOMD framework, we propose a truthful and efficient

Vickrey-score auction, achieving the truthful bidding and

the efficient resource allocation in a multi-object multi-

dimensional auction. Moreover, the Vickrey-score auction

can also work with existing bitrate adaptation methods and

achieve the conditional efficiency (or sub-efficiency).

• Real-world Demonstration System: We construct a real

demo system using Raspberry PI [25] (a series of single-

board computers), which enables the cooperation among

multiple users watching different videos. Using the demo,

we evaluate the implementation performance of CMVS.

• Experiments and Performances: We perform experiments

in both the simulative system and the demo system.

Simulations with real traces show that crowdsourced mo-

bile streaming outperforms noncooperative streaming by

48.6% (on average) in terms of social welfare. Exper-

iments through the demo system show that the crowd-

sourced framework together with the auction mechanism

can substantially increase mobile user’s welfare and video

service stability.

The rest of this paper is as follows. In Section II, we review

related works. In Section III, we propose the system model. In

Section IV, we propose the incentive mechanism. In Section V,

we discuss the demonstration system. In Section VI, we show

experiment results. In Section VII, we conclude our work.

II. RELATED WORK

A. Adaptive Bitrate Streaming

Most of early studies on ABR focused on the single-user

bitrate adaptation methods, such as buffer-based adaptation

[22], [23], bandwidth-based adaptation [24], and hybrid buffer-

bandwidth adaptation [26]–[28]. To better utilize the network

resources, some recent works studied multi-user streaming

models, which can be divided into four types: D2D model [4]–

[6], where multiple users download one video cooperatively

and share it through device-to-device links; P2P model [7]–

[9], where users download videos from other users who have

already downloaded the requested video segments; (many-to-
one) bandwidth aggregation [10]–[12], where multiple users

aggregate their bandwidth to serve one user’s video streaming

need; CMVS model [2], [3], where multiple video users (who

may watch different videos) form groups to share their cellular
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TABLE I
MULTI-USER MODELS IN ADAPTIVE BITRATE STREAMING

Reference Framework Type
Model Method

Demo
Multi-Server Multi-Video Multi-Seg per Allocation Bitrate Adaptation Incentive

[4] Device-to-Device
√ × √ × × √

[5], [6] Device-to-Device × × × × √ ×
[7], [8] Peer-to-Peer

√ × √ √ × √
[9] Peer-to-Peer

√ × √ × √ ×
[10]–[12] Bandwidth Aggregation × × √ × √ √

[2] Crowdsourced
√ √ × √ × ×

[3] Crowdsourced
√ √ × √ √ ×

This Paper Crowdsourced
√ √ √ √ √ √

resources to serve all users’ video streaming needs. We sum-

marize the key features of these works in Table I. Specifically,

from the model’s perspective, we compare two features: multi-

server, ’
√

’ if videos can be downloaded from multiple servers

(users with downloaded videos can be regarded as servers as

well); multi-video, ’
√

’ if users watch different videos. From

the method’s perspective, we compare three features: multi-

seg per allocation, ’
√

’ if multiple segments can be allocated

in an allocation; bitrate adaptation, ’
√

’ if bitrate adaptation is

considered; incentive, ’
√

’ if incentive mechanism is considered

to motivate users cooperation. We also compare whether the

studies involve real demonstration system or not.

This work builds upon our earlier work in [2] and [3]. In

[2], we proposed a CMVS model and analyzed the cooperative

video segment scheduling and bitrate adaptation issues, without

considering the incentive mechanism design. To motivate user

cooperation, we proposed an incentive mechanism in [3];

however, the incentive mechanism allocates a single segment in

each allocation, so that it may cause large signaling overhead

for the practical implementation. In this work, we propose an

MOMD auction-based incentive mechanism that can handle

multiple segments allocation in each auction. Moreover, we

construct a demo system to evaluate the real-world performance

of the CMVS model.

B. Multi-Dimensional Auction

Multi-dimensional auction [19] enables bidders to reveal

multi-dimensional information on auctioned goods. However,

most of the existing works considered the single-object auction,

where only one good is allocated in each auction. In [21],

Bichler et al. considered the multi-object extension for multi-

dimensional auction, and showed that the multi-object extension

is difficult in multi-dimensional auction because of the prefer-

ential dependence [20]: bidders’ preferences of price depend

on their preferences of quantity. They proposed a continuous

auction mechanism in the multi-object case. However, the

continuous auction can not guarantee truthful bidding and

efficient resource allocation. Moreover, it is time consuming

(a serious issue for real-time streaming), because bidders have

to submit bids repeatedly to reach an agreement.

III. SYSTEM MODEL

In CMVS model, we consider a set of N � {1, 2, ..., N}
mobile users downloading videos cooperatively. Each user

watches a video using ABR on a mobile device via 3G/4G

cellular links. Different users may watch different videos.

A. Adaptive Bitrate Streaming Model

We consider a typical ABR streaming [13] in the crowd-

sourced framework. Its key features are as follows.

Video Segmenting: A source video is partitioned into a

sequence of small segments; each segment contains a short

playback time (e.g., 2 seconds) of the source video. When

watching videos, users pull video segments from servers in

sequence using HTTP requests.

Multi-Bitrate Encoding: A segment is encoded at multiple

bitrates, and each encoded segment file (at a certain bitrate) is

assigned a uniform resource locator (URL). For each segment, a

user can select the most suitable bitrate and pull the correspond-

ing segment file using the unique URL. The bitrate selection can

be based on many factors, such as real time network conditions

and individual preferences.

Data Buffering: To smooth the playback, each downloaded

segment is saved in a buffer at the user’s device before playing.

The video player fetches segments from the buffer sequentially

for playback. Due to the device’s storage limit, the maximum

buffer size is limited.

For a user n ∈ N , let βn > 0 (seconds) denote the

user’s segment length (in terms of playback time); let Rn �
{R1

n, R
2
n, ..., R

Z
n } be the available bitrates set for this user,

where 0 < R1
n < R2

n < ... < RZ
n ; let Bn > 0 denote the

user n’s maximum buffer size (in seconds).

B. Crowdsourced Mobile Video Streaming (CMVS)

In CMVS model, users who are close-by (also called encoun-

tered) form mesh networks and share their network resources.

Through a proper scheduling mechanism, the group of users

cooperatively download the requested segments of the entire

group through cellular links and then forward segments to the

actual requesting users through WiFi or Bluetooth. Different

users can watch different videos in this framework.

We consider a continuous time model over a period of time

T � [0, T ], where t = 0 is the initial time and t = T is the

ending time. For any user n, let hn(t) > 0 denote this user’s

cellular link capacity at time t ∈ T . Let en,m(t) ∈ {0, 1}
denote the encounter between users n and user m at time t.
When en,m(t) = 1, user n and user m are encountered and

can help each other with the video downloading.
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C. User Model

In this section, we first describe the welfare generated

through the downloading operation between two users, and then

discuss the social welfare generated among all users.

In the downloading operation between two users, a user

n ∈ N downloads a sequence of segments with bitrates

r = {r1, r2, ..., rκ} (with a total of κ segments) for a user

m ∈ N , where ri > 0 for all i = 1, 2, ..., κ. User n and user

m can be the same user. For a segment i, the downloading

starts at ti and ends at τi. The ending time τi can be equal to

the start time of the next segment ti+1, if user n downloads

for user m consecutively. The downloading timings and the

channel condition satisfy the following relationship:∫ τi

ti

hn(t)dt = ri · βm, i = 1, 2, ..., κ,

where the total downloaded volume within the downloading

time equals to the size of the downloaded segment.

This downloading operation (by user n for user m) induces

cost for user n and utility for user m.

1) Cost of Downloader (User n): Cost of downloader is

user n’s cost for downloading and transmitting video segments

with bitrates r = {r1, r2, ..., rκ}. The cost function Cn,t(r) is

downloader-dependent and time-dependent, including the cost

on cellular link and the cost on WiFi link:

Cn,t(r) � ECELL

n,t (r) + EWIFI

n,t (r). (1)

The cost on cellular link includes the energy cost and the

cellular data payment for downloading the segments; the cost on

WiFi link is the energy cost that user n transmits the segments

to user m if n �= m. Let cn,t(r) be the downloading and the

transmitting cost for a single segment with bitrate r, and such

a cost cn,t(r) is a non-decreasing linear function [29], i.e.,

cn,t(0) = 0, [cn,t(r)]r ≥ 0, and [cn,t(r)]rr = 0.3 We assume

that the cost of the segments are independent of each other.

Hence, the cost Cn,t(r) can be represented as follows:

Cn,t(r) =

κ∑
i=1

cn,t(ri). (2)

2) Utility of Receiver (User m): Utility of receiver is

user m’s utility for receiving κ video segments with bitrates

r = {r1, r2, ..., rκ}. User often desires to watch a high quality

video without frequent video freezing (i.e., rebuffering) or

quality degradation [26]–[28]. Hence, the utility comprises

three parts: video quality gain, buffer filling gain4, and quality

degradation loss.

The utility function Um,t(r) is receiver-dependent and time-

dependent. It is related to the receiver m’s desire for high

3Let [·]x and [·]xx denote the first and the second order derivative with
respect to variable x respectively. Let [·]xy denote the mixed second order
derivate with respect to variable x and variable y.

4The downloading time is unknown before downloading, so it is difficult
to accurately estimate the chance of rebuffering when users make decisions.
Hence, we consider user’s buffer increase instead, which reveals the information
of rebuffering indirectly.

quality video θm,t, buffer level BCUR
m,t , and previous segment

bitrate RPRE
m,t. We represent the utility function as follows:

Um,t(r) � V Q(r, θm,t) + V B(r, BCUR

m,t)− LQD(r, RPRE

m,t) (3)

a) Video Quality Gain V Q(r, θm,t) is the user’s segment gain

in terms of video quality. A user has a higher gain if she

receives a segment with a higher video bitrate (quality). The

user-dependent factor θm,t reflects user m’s desire for a high

quality video. Let vQ
m(r, θm,t) be the video quality gain function

for a single segment with bitrate r, and this gain function

is non-decreasing and concave, i.e., [vQ
m(r, θm,t)]r ≥ 0 and

[vQ
m(r, θm,t)]rr ≤ 0. The quality gain is zero when the segment

bitrate is zero (receives nothing), i.e., vQ
m(0, θm,t) = 0, ∀θm,t.

Moreover, user with a higher θm,t has a higher desire to

increase the bitrate, hence [vQ
m(r, θm,t)]r is non-decreasing in

θm,t, i.e., [vQUA
m (r, θm,t)]rθ ≥ 0. We assume that the quality

gain of each segment is independent of the quality gain of the

other segments. Hence,

V Q

m(r, θm,t) =

κ∑
i=1

vQ

m(ri, θm,t), (4)

b) Buffer filling gain V B(r, BCUR
m,t) is the user’s gain in terms

of buffer filling. A user will have a higher gain if she has a

higher buffer filling, because of the reduced chance of video

freezing. For a user who is allocated a smaller number of

segments, she is happier when allocated an additional segment,

so the additional buffer filling gain (for the additional segment)

is larger. For a user with a lower current buffer size, she

is more willing to have new segments, so she will have a

higher buffer filling gain for the new allocated segments. Let

BCUR
m,t denote user m’s real-time buffer size. The buffer filling

gain reveals the impact of the segment number κ instead of

the bitrate vector r, hence we can rewrite the buffer filling

gain as V B
m(κ,BCUR

m,t), κ ∈ Z
+. For presentation convenience,

we consider a continuous range x ∈ R
+. To summarize, the

function V B
m(x,BCUR

m,t) satisfies the following inequalities:

[V B

m(x,BCUR

m,t)]x ≥ 0, [V B

m(x,BCUR

m,t)]xx ≤ Δ̃ < 0, (5)

[V B

m(x,BCUR

m,t)]BCUR
m,t

≤ 0. (6)

Segment number κ ∈ Z
+ is the discrete sampling of x ∈ R

+.

c) Quality Degradation Loss LQD(r, RPRE
m,t) is user’s loss

when the video degrades from a higher bitrate to a lower bitrate.

The user will have a higher degradation loss if the degradation

gap is larger. Let lQD
m (r̂, r) be the degradation loss due to the

fact that a segment degrades from the previous bitrate r̂ to the

current bitrate r with gap Δr = r̂ − r:

lQD

m (r̂, r) =

{
0, r̂ < r

l̃QD
m (Δr), otherwise

. (7)

The degradation loss linearly increases with gap Δr, i.e.,

[l̃QD

m (Δr)]Δr ≥ 0, [l̃QD

m (Δr)]ΔrΔr = 0. (8)

Let r0 = RPRE
m,t be the bitrate of the segment that user m receives

immediately before the new downloading segments. The loss
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LQD
m (r, RPRE

m,t) of the segments with bitrates r is the sum of the

degradation loss of all the segments. Formally,

LQD

m (r, RPRE

m,t) =

κ∑
i=1

lQD

m (ri−1, ri). (9)

3) Social Welfare: In the downloading operation by user

n for user m, the generated social welfare is defined as the

difference between the user m’s utility and the user n’s cost:

Wnm,t(r) = Um,t(r)− Cn,t(r). (10)

The social welfare of the system is the sum of the welfare

that generated through all the downloading operations among

all the users, where a user may download multiple segments

for multiple different users as the result of a single auction.

D. Problem Formulation

We aim to design a decentralized mechanism in the crowd-

sourced model, which helps each user to decide how to allocate

the downloading opportunities of K segments to near-by users

as follows: (i) for whom she should download segments, (ii)
what is the bitrate of each of the segments, and (iii) what is
the payment of the segment receiver?

IV. AUCTION-BASED INCENTIVE MECHANISM

A. Auction-Based Incentive Mechanism

We adopt an auction-based incentive mechanism, in which

each user allocates segment downloading opportunities using

auctions. At each decision epoch of a user (who is ready to

download segments), she acts as an auctioneer and initiates

an auction for all encountered users for deciding the next K
segments to be downloaded. This framework operates in an

asynchronous and decentralized manner, in the sense that each

user initiates an auction independently and asynchronously. The

user who intends to download is the auctioneer, denoted by

n; and the near-by users who demand videos are the bidders,

denoted by the set M: M � {m ∈ N | en,m(t) = 1, t ∈
[τ0, τ0 + ε]}. As the auctioneer can also watch a video, we

include user n in the bidder set as well, i.e., n ∈ M.

In a single dimensional auction, the bidding is restricted

to the price dimension (i.e., willingness-to-pay). In CMVS

model, however, video segments are heterogeneous in terms

of bitrate, so the price alone is not enough. In this paper, we

propose an MOMD auction framework, in which the bidders

reveal their intended bitrate and price through submitting multi-

dimensional bids on the K segments.

1) MOMD Auction Framework: Auctioneer n initiates an

auction to a set of bidders M = {1, 2, ...,M} to allocate K
segments. The bidder m’s private information is her real-time

utility, i.e., Um,t(·), depending on her desire for high quality

video θm,t, the buffer level BCUR
m,t , and the previous segment

bitrate RPRE
m,t (Section III-C2). Although parameters θm,t, B

CUR
m,t

and RPRE
m,t are time-dependent, we assume that these parameters

are fixed for a single auction. We consider a two-dimensional

auction, where bidders submit two-dimensional bids comprising

bitrate and price. According to the bids, the auctioneer allocates

the K segments to multiple bidders. MOMD auction framework

operates as follows:

Mechanism 1. [MOMD Auction Framework]
1) The auctioneer n announces auction rules, including the

segment number K, allocation rule Γ(·), and payment

rule Π(·);
2) Each bidder m ∈ M submits a bid bm = (Rm,pm)

according to her private information to maximize her own
expected payoff. Here,

• Bitrate matrix

Rm =

⎡
⎢⎢⎢⎣

rm1
rm2

...
rmK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

rm11 0 ... 0
rm21 rm22 ... 0

...
...

. . .
...

rmK1 rmK2 ... rmKK

⎤
⎥⎥⎥⎦ ,

where rmκi ∈ Rm represents the desirable bitrate of
the ith segment when bidder m is allocated a total
of κ segments.

• Price Vector pm = (pm1 , pm2 , ..., pmK) , where pmκ
represents the total price (willingness-to-pay) when
bidder m is allocated a total of κ segments.

3) The auctioneer n determines allocation set, i.e., the
winner of each segment, σ† � {σ†

1, σ
†
2, ..., σ

†
K}, and the

payment set, i.e., the price that each bidder needs to pay,
π† � {π†

1, π
†
2, ..., π

†
M}, according to the rules:

σ† = Γ(bm, m ∈ M), π† = Π(bm, m ∈ M).

Accordingly, the actual downloading bitrate of each
segment is the corresponding submitted bitrate of the
bidders, denoted by r† � {r†1, r†2, ..., r†K}.

In the auction, the allocation set and the bitrate set enumerate

the receiver and the bitrate for each segment; however, the

payment set enumerates the payment from each bidder. For

presentation convenience, we define a revised allocation set σ‡

and a revised bitrate set r‡, so that all the allocation results can

be represented for each bidder.

Based on the set σ†, let κ̃m denotes the segment number

that is allocated to the bidder m as the result of the auc-

tion. The revised allocation set is: σ‡ = {κ̃1, κ̃2, ..., κ̃M},
where

∑M
m=1 κ̃m = K. The revised bitrate set is: r‡ =

{r̃1, r̃2, ..., r̃M}, where vector r̃m is the bitrate set that bidder

m is allocated κ̃m segments, i.e., r̃m = rmκ̃m
.

Based on the auction results, the auctioneer n’s payoff is the

sum of the difference between each bidder’s payment and n’s

downloading cost for this bidder’s segments, given by:

Pn(π
†, r‡) =

M∑
m=1

[π†
m − Cn,t(r̃m)], (11)

where Cn,t(·) is auctioneer n’s cost defined in (1). And

bidder m’s payoff is the difference between her utility and her

payment, given by:

Pm(π†
m, r̃m) = Um,t(r̃m)− π†

m, (12)

where Um,t(·) is bidder m’s utility defined in (3).
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2) Vickrey-Score Auction: In a multi-dimensional auction,

the bids may not be sorted directly as they are vectors, and

this introduces difficulties for determining the allocation set

and the payment set. We introduce a score function to address

this problem. The key idea is to transform multi-dimensional

bids into sequences of marginal scores, so that the auctioneer

can sort the bids based on the scores and make decisions. We

define the score function as follows.

Definition 1 (Score Function). For any allocated segment
number κ, the score function φ(rκ, pκ) is given by

φ(rκ, pκ) = pκ − s(rκ), (13)

where s(·) is a non-decreasing function and s(0) = 0.

The function s(·) actually does not have a specific physical

meaning, so we can choose it to achieve certain requirements,

such as efficient allocation in Section IV-B2.

Given the score function and submitted bid bm, we have

the marginal score sequence for each bidder m: Sm =
{Sm

1 , Sm
2 , ...Sm

K}, where the κth marginal score for bidder m
is bidder m’s score increase when bidder m’s total allocated

segment number increases from κ− 1 to κ. Formally,

Sm
κ =

{
φ(rm1 , pm1 ), κ = 1
φ(rmκ , pmκ )− φ(rmκ−1, p

m
κ−1), κ ≥ 2

(14)

We assume that the marginal score is non-negative and non-

increasing in κ for all bidders. Non-negative implies that an

additional segment induces a larger score; non-increasing im-

plies that the score increase is non-increasing with the allocated

segment number κ. Intuitively, this assumption reflects on the

user’s concave score in terms of allocated segment number.

Assumption 1 (Marginal Score). For any bidder m ∈ M,
the marginal score sequence Sm is non-negative and non-
increasing in κ, where:

Sm
κ−1 ≥ Sm

κ ≥ 0, κ = 2, ...,K.

Inspired by the VCG mechanism [30], we propose a Vickrey-

score auction, where we allocate the K segments to the K
highest marginal scores, and choose the payments reflecting

the score damages of the winners to the system. We will first

introduce the math notations, and then provide a numerical

example to further explain the notations.

For a bidder m, let sequence Ŝ−m denote the K highest

marginal scores excluding bidder m:

Ŝ−m � {Ŝ−m
1 , Ŝ−m

2 , ..., Ŝ−m
K },

where Ŝ−m
k is the kth highest value among all the bidders’

marginal scores excluding bidder m’s. For all bidders, let S†

denote the K highest marginal scores:

S† � {S†
1, S

†
2, ..., S

†
K},

where S†
k is the kth highest value among all the bidders’

marginal scores. Formally, the Vickrey-score auction mecha-

nism is defined as follows5:

5The determination of the auction results only requires the sorting of the
marginal scores with a relatively low complexity.

Mechanism 2 (Vickrey-Score Auction). The Vickrey-score
auction is defined by:

• Allocation Rule: The segment k’s receiver σ†
k is the user

related to the kth highest marginal score, i.e.,

S
σ†
k

i = S†
k, (15)

where S
σ†
k

i refers to the ith marginal score of bidder σ†
k.

• Payment Rule: The bidder m’s payment π†
m for κ̃m

segments corresponds to the score damage caused by this
bidder under her submitted bitrate, i.e.,

π†
m − s(rmκ̃m

) =

κ̃m∑
i=1

Ŝ−m
K−κ̃m+i. (16)

Example 1. Considering a case with M = 3 users and K = 4
segments. The marginal score sequences are as follows: S1 =
{8, 7, 5, 2}, S2 = {9, 6, 3, 2}, S3 = {4, 4, 3, 1}. Hence,
we have the sorted sequences:

S† = {9, 8, 7, 6}; Ŝ−1 = {9, 6, 4, 4};
Ŝ−2 = {8, 7, 5, 4}; Ŝ−3 = {9, 8, 7, 6}.

Under the Vickrey-score auction, the auction results are as
follows: user 1 wins two segments (with scores 8 and 7), and
user 2 wins two segments (with scores 9 and 6). The payments
of user 1 and user 2 are:

π†
1 =

2∑
i=1

Ŝ−1
4−2+i + s(r12) = 4 + 4︸ ︷︷ ︸

score damage

+s(r12);

π†
2 =

2∑
i=1

Ŝ−2
4−2+i + s(r22) = 5 + 4︸ ︷︷ ︸

score damage

+s(r22).

Take user 1 as an example: without user 1, user 3 will win 2
segments with scores 4 and 4, so these scores are the score
damage that caused by user 1. Hence, user 1 has to pay the
price that compensates this damage as shown above.

B. Truthfulness and Efficiency

In this section, we first analyze bidder’s equilibrium strate-

gies in terms of the price and bitrate choices in the bid. Based

on bidder’s equilibrium behaviors, we propose the efficient

mechanism through a proper choice of score function.

1) Truthfulness and Optimal Bitrate: In Vickrey-score

auction, we prove that each bidder will submit her bid (i.e.,

price and bitrate) at the equilibrium according to Proposition

1 and Proposition 2 to maximize her expected payoff. The

detailed proofs can be found in Appendices A and B.

Proposition 1 (Truthfulness). Given any bitrate matrix Rm,
the equilibrium price vector pm of each bidder m is her true
utility under the selected bitrate matrix Rm, i.e.,

pmκ = Um,t(r
m
κ ), κ = 1, 2, ...,K. (17)

where Um,t(·) is the utility function of bidder m.
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Proposition 2 (Optimal Bitrate). For any number κ of
allocated segments to bidder m, the equilibrium bitrate rmκ is
the optimal solution r� of the following optimization problem:

maximize
r

Um,t(r)− s(r)

subject to ri > 0, i = 1, ..., κ,

ri = 0, i = κ+ 1, ...,K,

variables ri ∈ Rm, i = 1, ..., κ.

(18)

The constraints restrict the allocated segment number to be κ.

2) Efficiency: Notice that Propositions 1 and 2 hold for any

choice of score function in the form of (13). On the other hand,

the specific choice of s(rκ) determine the bidder’s equilibrium

strategies as well as the allocation and the payment, so the

auctioneer can choose the proper score function to achieve

a desirable auction outcome. In this section, we propose the

efficient score function that maximizes the social welfare.

Definition 2. An efficient score function is in the form of:

φ(r, p) = p− Cn,t(r), (19)

where Cn,t(r) is the downloading cost of the auctioneer.

If each bidder submits the bid based on the equilibrium price

in Proposition 1 and the equilibrium bitrate in Proposition 2,

we prove that the Vickrey-score auction with the efficient score

function maximizes the social welfare. The detailed proof can

be found in Appendix C.

Theorem 1 (Efficiency). Under the equilibrium bidding behav-
ior specified in Propositions 1 and 2, Vickrey-score auction with
the efficient score function implements the efficient mechanism
that maximizes the social welfare.

Finally, for compatibility with the current video streaming

services, we can also implement the auction without altering

the existing bitrate adaptation methods. Mathematically, this

means that matrix Rm of each bidder m can be predetermined

by the streaming protocol and is not bidder m’s active decision.

In this case, if each bidder choose the bidding price according

to Proposition 1 and use an existing bitrate adaptation method

(e.g. [22]–[24], [26]–[28]), we can show that the Vickrey-

score auction with the efficient score function is conditionally

efficient. The proof of Corollary 1 is similar to that of Theorem

1, and is omitted due to space limit.

Corollary 1 (Conditional efficiency). Given any fixed bitrate
Rm, Vickrey-score auction with the efficient score function
maximizes the social welfare under the fixed bitrates.

V. DEMONSTRATION SYSTEM

We implement the CMVS system on Raspberry PI Model

B+ [25] with the Wheezy-Raspbian operating system. In the

demonstration system, Raspberry PIs correspond to the mobile

devices, which are equipped with monitors (for video playing),

LTE USB modems (for LTE connections), and WLAN adapters

(for WiFi connections). The devices can dynamically join and

leave the cooperative group and there is no need for centralized
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Fig. 3. Demonstration System Architecture.

control. After joining the cooperative group, the mobile devices

download video segments via LTE and forward messages as

well as video segments to other devices (if needed) through

WiFi connections.

As an example, Figure 3 shows the system architecture with

two mobile devices. Note that this demo is also applicable

for multiple devices scenarios. In this video streaming system,

Storage & Controller stores system information and download-

ed video data, and offers necessary control signal for other

components. Based on these control signals, Video Requester
pulls video segments from servers through LTE links, and

Video Buffer fetches the segments that are for the mobile user’s

own video consumption. User Interface obtains videos from

the buffer and displays the video to human. The other key

components for CMVS are listed as follows.

Auction Module is responsible for implementing our pro-

posed auction. It mainly consists of two parts: Auctioneer
component and Bidder component. When the device acts as

an auctioneer, Auctioneer component is active and is in charge

of the information announcement and auction determination.

When the device acts as a bidder, Bidder component is active

and is in charge of bid calculation and submission.

Message Dispatcher is responsible for transmitting and

receiving auction-related information, such as auction results

announcement and bid submission. It transmits and receives

messages through WiFi connection.

Transmitter & Receiver is responsible for transmitting and

receiving video segments. This component transmits the down-

loaded segments to others and receives the segments download-

ed by others.

VI. EXPERIMENTS AND PERFORMANCE

A. Method Comparison

In this section, we compare our proposed auction scheme

with existing methods using real cellular link capacity traces

obtained from BesTV, one of the video service providers in

China. We perform the comparison results for 500 randomly

generated network scenarios and show the average results. For

each network scenario, we consider three users whose cellular

link capacities randomly generated based on the statistics ex-

tracted from the real traces, and each of the user is interested in

watching a 100-second video within 100 seconds. The available

bitrates for all users’ videos are {0.2, 0.4, 0.7, 1.3, 2.3}Mbps,

and the common segment length β = 10s.
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We compare our mechanism with existing methods from

two aspects: (i) comparison among noncooperation, coopera-

tion with single-dimensional (Vickrey) auction [30], and co-

operation with multi-dimensional (our Vickrey-score) auction;

(ii) bitrate adaptation comparison among buffer-based method

(BUF-based) [23], bandwidth-based method (BW-based) [24],

and hybrid buffer-bandwidth method (Hybrid) [26], and our

optimal bitrate method (OPT). For now we do not consider the

impact of auction overhead, under which it would be optimal to

allocate K = 1 segment which offers the maximum flexibility

to the users. We will consider the impact of overhead and the

proper choice of K in Section VI-B.

As Figure 4 shows, for comparison (i), compared with non-

cooperation (or cooperation with single-dimensional auction),

cooperation with multi-dimensional auction increases the social

welfare by 48.6% (or 3.9%) on average. For comparison (ii),

under the scenario of the cooperation with multi-dimensional

auction (the red bars), comparing with other bitrate adaptation

methods, our mechanism increases the social welfare by 24.8%
on average.

B. Auction Overhead

Now we study the impact of auction overhead and the proper

choice of K. The simulation setting is the same as that in

Section VI-A, except we change the value of K. We consider

a fixed cost for each auction, named by cost per auction. By

increasing the segment number K per auction, the cost spent on

the auctions (i.e, the total overhead) in a fixed video scheduling

cycle (e.g., 100 seconds in our experiment) reduces.

As in Figure 5, when cost per auction is zero, social welfare

decreases with segment number K due to the difficulty in

accurately predicting future channel conditions when auctioning

a larger number of segments all at once. As the cost per auction

increases, the social welfare decreases, but a larger K may be

better than K = 1 because of its smaller total overhead.

C. Realistic Performance

We further perform experiments over the demo system in

Section V. The bitrates set is {0.5, 1.0, 2.2, 5.0}Mbps, and the

segment length β = 10s.

1) Welfare Increase for High and Low Capacity Users:
In this experiment, four users {A,B,C,D} form a group for

CMVS: user A and B do not watch videos and have cellular link

capacities around 3.5Mbps, user C and D watch two different

videos and have cellular link capacities around 1.2Mbps.
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Figure 6 shows the video scheduling results of users C and D

in a single experiment. The gray fluctuating curves correspond

to the cellular link capacities of various users. The stems with

circles (or crosses) are the segments downloaded by user herself

(or others), and the height of these stems represent the bitrates.

We measure the link capacities and the bitrates using the same

units Mbps. In Figure 6, although user C and D have link

capacities around 1.2Mbps, both of them are able to watch

videos mostly at the bitrate of 2.2Mbps and do not suffer from

rebuffering with the help of users A and B. Moreover, user A

and B gain positive payoffs (sharing 13.51% of the total social

welfare) due to the payments from user C and D.

2) Video Streaming Stability: We consider two users, A and

B, both of which watch different videos and have cellular

capacities around 3.6Mbps. User A is always connected to

the Internet, while user B is disconnected from the Internet

between 50 seconds to 220 seconds. Figure 7 shows the result

of an experiment. Although there are bitrate degradations, user

B watches the video continuously with the help from user A.

This demonstrates the practical benefit of CMVS.

VII. CONCLUSION

In this work, we propose an MOMD auction-based incentive

mechanism for CMVS model to motivate the cooperation

among mobile users. Based on the MOMD framework, we

further design a truthful and efficient Vickrey-score auction that,

as far as we know, is the first auction mechanism that achieves

the truthful bidding and the efficient resource allocation in a

multi-object multi-dimensional auction. We further construct

a demo system to evaluate the real world performance of
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the CMVS system. In the current work, we focus on the

social welfare maximization in each auction. It is perhaps more

practical to consider the social welfare maximization among a

sequence of auctions. Namely, bidders and auctioneers make

decisions based on both current information and predicted

future information (such as future auction initiation). This

extension is challenging but will further enhance the system

performance of the CMVS model.
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APPENDIX

A. Proof for Proposition 1

Proof. Suppose that all bids except bidder m’s are fixed (re-

sulting in a fixed vector Ŝ−m = {Ŝ−m
1 , Ŝ−m

2 , ..., Ŝ−m
K }), and

bidder m’s bitrate matrix Rm is fixed. If bidding truthfully,

bidder m will submit a price pm = (pm1 , pm2 , ..., pmK) (leading to

a marginal score vector Sm = {Sm
1 , Sm

2 , ..., Sm
K}) and win κ†

m

segments with a payoff Pm = Um,t(r
m
κ†
m
)−(

∑κ†
m

i=1 Ŝ
−m

K−κ†
m+i

+

s(rm
κ†
m
)). If bidding untruthfully, bidder m will submit a

price p̄m = (p̄m1 , p̄m2 , ..., p̄mK) and win κ̄†
m segments with a

payoff P̄m = Um,t(r
m
κ̄†
m
) − (

∑κ̄†
m

i=1 Ŝ
−m

K−κ̄†
m+i

+ s(rm
κ̄†
m
)). We

will show that bidder m cannot obtain a higher payoff by

submitting p̄m �= pm, i.e., Pm − P̄m ≥ 0. From the above

discussions, we have Um,t(r
m
k )−s(rmk ) =

∑k
i=1 S

m
i for all k,

Sm
κ†
m
≥ Ŝ−m

K−κ†
m+1

, and Sm
κ†
m+1

≤ Ŝ−m

K−κ†
m

. Moreover, elements

in vector Ŝ−m are in the non-increasing order, and vector

S−m satisfies Assumption 1. This leads to the following three

possible results:

• If κ†
m = κ̄†

m, then Pm − P̄m = 0.

• If κ†
m > κ̄†

m (loses segments by untruthful bidding), then

Pm − P̄m =
∑κ†

m

i=κ̄†
m+1

Sm
i −∑κ†

m−κ̄†
m

i=1 Ŝ−m

K−κ†
m+i

≥ 0.

• If κ†
m < κ̄†

m (gains segments by untruthful bidding), then

Pm − P̄m = −∑κ̄†
m

i=κ†
m+1

Sm
i +

∑κ̄†
m−κ†

m
i=1 Ŝ−m

K−κ̄†
m+i

≥ 0.

This completes the proof. �

B. Proof for Proposition 2

Proof. For any bidder m, we will show that given any bid

(R̄m, p̄m), there always exists a bid (Rm,p∗) that leads

to a larger expected payoff for bidder m than that of bid

(R̄m, p̄m). The bid (Rm,p∗) satisfies two properties: i) bitrate

Rm is derived using Proposition 2, ii) the marginal score

vector of the bid (Rm,p∗) is the same as that of the bid

(R̄m, p̄m), which implies that bidder m will win the same

number of segments with these two bids, denoted by κ†
m. If

κ†
m = 0, bidder m’s payoff is zero under both the bids. If

κ†
m > 0, bidder m’s payoff under (Rm,p∗) and (R̄m, p̄m)

are Pm = Um,t(r
m
κ†
m
) − (

∑κ†
m

i=1 Ŝ
−m

K−κ†
m+i

+ s(rm
κ†
m
)) and

P̄m = Um,t(r̄
m
κ†
m
)− (

∑κ†
m

i=1 Ŝ
−m

K−κ†
m+i

+ s(r̄m
κ†
m
)), respectively.

As bitrate Rm is derived through maximizing Um,t(r)− s(r)
under the segment number constraints, Um,t(r

m
κ†
m
)− s(rm

κ†
m
) ≥

Um,t(r̄
m
κ†
m
)− s(r̄m

κ†
m
), ∀κ†

m. Hence, Pm ≥ P̄m. �

C. Proof for Theorem 1

Proof. In the Vickrey-score auction with an efficient score

function, when bidding according to Propositions 1 and 2, each

bidder’s score φm,n,t = {φm,n,t
1 , φm,n,t

2 , ..., φm,n,t
K } satisfies

φm,n,t
κ = max

rκ

Um,t(rκ)− Cn,t(rκ), for all κ,

where rκ denotes the bitrate vector that satisfies the constraint

of κ segment number. Let σ = {κ1, κ2, ..., κM} denote

an allocation set, where κm is the number of segments al-

located to user m. Based on the allocation rule, the auc-

tioneer will choose the set σ that maximizes
∑M

m=1 φ
m,n,t
κm

.

With the efficient score function, maxσ
∑M

m=1 φ
m,n,t
κm

=

maxσ maxrm
κ ,∀m,κ

∑M
m=1(Um,t(r

m
κm

) − Cn,t(r
m
κm

)), which

maximizes the social welfare through proper choices of the

allocation set and the bitrate sets. �
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