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Abstract

The Internet of Things connects a large num-
ber of smart mobile devices with the Internet, 
where these devices are embedded with often 
limited communication, computation, and cach-
ing resources. To address the heterogeneity of 
these devices and achieve efficient overall system 
resource utilization, researchers have proposed 
various device-to-device resource sharing mod-
els, enabling mobile devices to form device-to-
device connections and to share their resources 
for cooperative task execution. Most of these 
existing works, however, considered scenarios 
where mobile devices can share one or two types 
of resources, and hence inadequately explore 
the potential of resource sharing among mobile 
devices. In this article, we introduce a gener-
al framework where mobile devices can share 
any combination of the three types of resourc-
es, and it can generalize many existing device-
to-device resource sharing models. In addition, 
it can achieve more efficient resource allocation 
by offering mobile devices more flexibility in 
terms of resource sharing. Based on the proposed 
framework, we focus on discussing two issues: 
the optimization issue, regarding how to sched-
ule resources among devices; and the econom-
ic issue, regarding how to motivate the device 
owners to share their resources. We introduce 
the challenges and potential solutions to these 
two issues. We further outline several open issues 
and future directions for the proposed general 
resource sharing framework.

Introduction
The Internet of Things (IoT) connects a large num-
ber of smart mobile devices (e.g., wearable devic-
es, smartphones) with the Internet, where these 
devices are embedded with often limited commu-
nication, computation, and caching (3C) resourc-
es. These mobile devices can communicate and 
interact with each other to perform tasks (e.g., 
data sensing, analysis) without always requiring 
human-to-human or human-to-computer interac-
tions. The IoT framework can effectively monitor 
human behaviors and environmental circumstanc-
es, and perform smart decision making [1].

IoT is a large-scale distributed system, and the 
tasks and devices in the system are always highly 
heterogeneous [1]. To accomplish various com-

plicated tasks that require effective 3C resource 
coordination, it is important to exploit the device-
to-device (D2D) connections of mobile devices, 
and to propose D2D resource sharing models 
that enable resource sharing among devices for 
cooperative task execution. Note that this is dif-
ferent from the mobile edge computing scenario 
[2], where mobile devices offload their tasks to 
edge servers, under which many existing works 
have studied joint 3C resource optimization 
(e.g., [3]).

For D2D resource sharing, many existing works 
proposed 1C resource sharing models. In these 
models, one type of resource is shared among 
devices. Tang et al. [4] considered the sharing of 
downloading resources for mobile video stream-
ing services. Xu et al. [5] considered the sharing 
of computation resources through D2D connec-
tions, and proposed an incentive mechanism to 
motivate the sharing. In [6], Feng et al. considered 
content sharing among nearby devices. Some 
studies focused on 2C resource sharing models, 
where devices share two types of resources. Chen 
et al. [7] proposed a model that shares communi-
cation and computation resources. In [8], Destou-
nis et al. proposed a caching and computation 
resource sharing model for cooperative data pro-
cessing.

In this work, building upon these 1C and 2C 
models, we propose a 3C framework for D2D 
resource sharing, where mobile devices can share 
any combination of the three types of resourc-
es. This framework is an extension of our earlier 
work [9] in terms of divisible computation mod-
ule. Figure 1 shows an instance in a smart medical 
healthcare application scenario: family members 
monitor their health using wearable medical 
devices (devices A1, A2, and A3), a smartphone 
(device B), and a laptop (device C). The health 
monitoring task contains three main processes: 
retrieve real-time and historical data, perform data 
analysis and summarization, as well as store the 
summarized data (locally and in the cloud). In the 
3C framework, these devices communicate with 
each other through D2D connections. By con-
sidering the capability of each device, the mon-
itoring can be achieved as follows: devices A1, 
A2, and A3 provide real-time measurement data 
(cached content sharing); device B downloads 
historical data from the Internet (communication 
sharing), performs data analysis and summari-
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zation (computation sharing), and uploads the 
summarized data to the Internet (communication 
sharing); device C stores the summarized data at 
its local cache. We want to emphasize that such 
a 3C framework is not limited to any particular 
application. Instead, it enables effective cross-ap-
plication coordination in terms of the joint 3C 
resource sharing and scheduling among mobile 
devices.

There are two key advantages of implement-
ing the proposed 3C framework. First, each 
task in the framework is modeled in a general 
resource-centric way, so the tasks belonging to dif-
ferent applications (with heterogeneous resource 
requirements) can share the resources of multi-
ple devices together. Second, when scheduling 
resources, the framework can jointly consider all 
the 3C resources, so it can achieve more efficient 
resource allocation when compared with the pre-
viously mentioned 1C and 2C models.

The understanding of two key issues is 
required for implementing the 3C framework: the 
optimization issue, regarding how to schedule 
the resources of mobile devices efficiently for the 
cooperative task execution; and the economic 
issue, regarding how to motivate resource shar-
ing among the devices of different users. Study-
ing these two issues, however, is challenging in 
the 3C framework due to the coupling of the 3C 
resources.

The key contributions of this article are listed 
as follows:
•	 3C framework: We propose a framework for 

3C resource sharing. It can include many 
existing 1C and 2C models (e.g., [4–8]) as 
well as 3C models (e.g., [9]) as special cases.

•	 Optimization and economic issues: We 
outline the main challenges of solving the 
optimization and economic issues in the 
3C framework, and propose several online 
scheduling algorithms and incentive mecha-
nisms dealing with the challenges.

•	 Future research directions: We identify some 
future research directions for the 3C frame-
work.
In the rest of this article, we first introduce the 

proposed 3C framework. Then we discuss the 
optimization and economic issues. Finally, we out-
line future research directions.

A General 3C Framework
We first introduce the idea of the 3C framework. 
Then we show its generalization of the existing 1C 
or 2C models.

3C Framework

In this framework, we aim to enable mobile devic-
es with tasks requesting any combination of the 
3C resources to form cooperative groups through 
D2D connections to accomplish their tasks. To 
achieve such joint sharing of the 3C resourc-
es, the most crucial part is to design a general 
resource-centric task model that can accommo-
date as many types of tasks as possible.

To achieve this, we propose a general task 
model, which is an extension of the task model 
in [9]. This task model is illustrated in Fig. 2. Note 
that by specifying the resources requested, this 
task model can include the existing task models 
(e.g., [4–8]) as special cases. Specifically, the task 
model is centered around a computation module, 
which needs some input contents and has some 
output contents. The input content specifications 
include the required contents but not the content 
sources, so the contents can be either download-
ed or retrieved from the caches of other devices 
(depending on the available 3C resources). The 
computation module corresponds to a compu-
tational process, which consists of a set of com-
putational subtasks. The dependence among 
the subtasks is represented by a directed acyclic 
graph, where each node represents a subtask, 
and the directed edge from one node to another 
means that the former subtask has to be executed 
prior to the later subtask. The output contents can 
be cached at the owner of the task or uploaded 
to the Internet. Moreover, any part of this task 
model can be none or zero; hence, it includes the 
previously mentioned 1C and 2C models as well 
as the task model in [9] as special cases.

This task model specifies the contents request-
ed, and hence it is a content-based model. This is 
different from many existing computation sharing 
models (e.g., [5]) and 2C models (e.g., [7, 8]), 
which considered data-based models that specify 
the volume as well as the source and destination 
of the requested data. The content-based feature 
provides flexibility of the content retrieving and 
forwarding, because the tasks do not need to 
specify the source and destination of the con-
tents. The flexibility further allows the sharing of 
downloading resources and cached contents, 
as the framework can automatically determine 
where to retrieve contents (either from the Inter-
net or from a device’s local cache) through joint 
optimization.

Figure 1. An application instance of the 3C framework: devices share their 3C 
resources for smart medical healthcare.
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Figure 2. The general resource-centric task model.
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In the 3C framework, to achieve the joint 3C 
resource sharing, mobile devices specify their 
tasks using the general resource-centric task 
model without specifying the detailed applications 
(e.g., video streaming, virtual reality). As a result, 
from the system’s point of view, the 3C frame-
work can focus on the 3C resources requested 
by the tasks and those owned by the devices, and 
properly schedule the resources to accomplish 
the tasks. The scheduling in the 3C framework 
mainly involves the allocation of the input and 
output contents as well as the computational sub-
tasks of the computation module, and the trans-
mission of the contents among the devices. The 
scheduling optimization is addressed later.

To show the benefit of applying the pro-
posed framework, Fig. 3 presents an example 
with five devices and two tasks. Device 1 wants 
to cache and watch video content H; device 4 
wants to transcode video content H to video 
content L, edit video content L to video con-
tent E, cache and watch the edited content, and 
upload the content to the Internet. Although 
the tasks of the two devices are quite different, 
in the 3C framework, both tasks can be mod-
eled using the general task model, as shown in 
Fig. 3. As a result, the devices need to consid-
er only the resources requested by the tasks, 
and they can jointly optimize the scheduling 
of the requested resources (regardless of the 
tasks requesting them) to avoid repeated con-
tent downloading and forwarding. For exam-
ple, device 3 can be responsible for retrieving 
content H (from either the Internet or its local 
cache), which is forwarded to device 1 for 
caching and transcoding. The transcoded video 
content L is then forwarded to device 2 for 
editing. The edited video content is forward-
ed to device 4 for caching and to device 5 for 
uploading. Such scheduling is obviously more 
efficient (e.g., in terms of energy consumption) 
than scheduling the two tasks respectively.

Generalization of Existing 1C and 2C Task Models

By specifying the resources requested, the pro-
posed task model can accommodate many 1C 
and 2C task models.

Communication Resource Sharing: The pro-
posed task model can include the content down-
loading task model in [4] as a special case by 
specifying the requested resources as follows: 
the input contents and cached contents both 
correspond to the contents to be downloaded; 
the task owner is the one who wants the con-
tents; there is no computation process and no 
content to be uploaded. In the case when no 
device in the system has cached the required 
contents, the system will schedule devices to 
download these contents as well as schedule the 
content transmission among the devices from 
the content downloaders to the task owner. In 
addition, the proposed task model can include 
the content uploading task model as a special 
case as follows: the input and upload contents 
both correspond to the contents to be uploaded; 
there is no computation process and no content 
involved in the caching process.

Computation Resource Sharing: To model a 
computation task [5], the general task model can 
be specified as follows. The input contents are the 

contents required to be input for computation, 
the cache contents are the output contents of 
the computation, and the computation process 
is specified according to the task requirements. 
Note that the computation process could contain 
multiple computational subtasks, as in the task 
model in [10].

Cached Content (Caching) Sharing: To 
model the task of retrieving contents from other 
devices [6], the general task model can be spec-
ified as follows. The input contents and cache 
contents both correspond to the contents to be 
retrieved; the task owner is the one who wants 
the contents; there is no computation process 
and no content for uploading. In the case when 
some devices have the requested contents, the 
system can optimize the devices that share the 
contents, and optimize the content transmission 
from the devices sharing the contents to the task 
owner.

Communication and Computation Sharing: If 
no device has the input contents requested by 
the tasks in the system, the proposed task model 
(Fig. 2) degrades to a communication and com-
putation sharing model. However, although this 
degradation process is straightforward, it is hard 
to upgrade a communication and computation 
sharing model to a 3C sharing model. This is 
because in most works on communication and 
computation sharing (e.g., [7]), their task mod-
els are data-based, specifying only the amount 
of computation and communication resources 
that each task requests. These 2C models cannot 
effectively address the cached content sharing 
problem without specifying the sources and des-
tinations.

Caching and Computation Sharing: If there is 
no content to be downloaded or uploaded, the 
framework degrades to a caching and compu-
tation sharing model. However, for the existing 
caching and computation sharing models (e.g., 
[8]), it is difficult to directly transform them into a 
3C model, because these existing studies focused 
on data-based models. When further considering 
the communication resource dimension, a data-

Figure 3. An example of the 3C framework.
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based model does not allow us to easily decide 
whether to retrieve contents using cached con-
tent sharing (from devices’ caches) or download-
ing sharing.

optImIzAtIon In the 3c FrAmework
In this section, we discuss the optimization and 
economic issues under the 3C framework. For 
each issue, we introduce its problems, challenges, 
and candidate solutions.

optImIzAtIon Issue

The optimization issue aims to understand how 
to schedule the resources of mobile devices effi  -
ciently for cooperative task execution. Specifi cally, 
which devices should be responsible for down-
loading, retrieving (at local caches), and upload-
ing contents, as well as performing the subtasks 
of the computation module? How should the con-
tents be transmitted among devices through D2D 
connections? This issue contains both off line and 
online optimization.

Offline Optimization: Offline optimization 
aims to optimize the resource scheduling in a cen-
tralized manner under complete system informa-
tion, assuming that all the task requirements and 
device capacities are known. Such offline opti-
mization can characterize the performance (e.g., 
energy consumption) of the 3C framework and 
serve as a benchmark for online optimization.

Off line optimization involves two sets of binary 
decision variables. The fi rst set corresponds to the 
allocation decisions, indicating whether a process 
(e.g., the retrieving, downloading, or uploading 
of a content, the execution of a computational 
subtask) of a task is performed by a device or not. 
The second set corresponds to the multihop trans-
mission decisions, indicating whether an input 
or output content of a task (or an intermediate 
content between dependent computational sub-
tasks) is forwarded from one device to another 
or not. Due to the 3C resource coupling and the 
involved binary decision variables, offline opti-
mization always leads to a nonconvex integer 
programming problem. To address this, auxiliary 
variables may be needed to transform the prob-
lem into a linear integer programming problem (if 
possible), and linear relaxation may be applied to 
reduce the computation complexity.

As an example, based on the energy minimiza-
tion problem in [9], we compare the performance 
of the proposed 3C framework with that of the 
1C/2C models. As shown in Fig. 4, we evaluate 
the normalized energy consumption (with respect 
to the energy consumption without any cooper-
ation) of the 1C/2C models and the 3C frame-
work under different variance coefficients (for 
generating the task and user parameters). A larger 
variance coefficient implies a higher degree of 
heterogeneity among the devices and the tasks. 
The figure shows that the proposed framework 
can signifi cantly reduce the energy consumption 
when compared to 1C/2C models. Moreover, 
the energy reduction is more signifi cant under a 
larger variance coefficient, as the larger hetero-
geneity provides devices more opportunities for 
cooperation.

Online Scheduling Algorithm: In practice, 
however, the number of devices could be quite 
large, and the system information may vary over 

time. This makes offline optimization, requir-
ing complete system information, inapplicable. 
Hence, it is important to propose a distributed 
online algorithm that allows devices to make 
their scheduling decisions in a decentralized 
fashion without knowledge of future system 
information. Since it can be costly to let mobile 
devices communicate with devices that are mul-
tiple hops away in a decentralized fashion, we 
focus on task scheduling within one hop in this 
section.

However, it is challenging to design an 
online algorithm operating in a decentralized 
fashion. First, the tasks always request a com-
bination of the 3C resources, so the schedul-
ing decisions for these tasks should take into 
account each of the resources together with 
the involved D2D resources among mobile 
devices. Second, from a device’s point of 
view, the scheduling performance (e.g., ener-
gy consumption, task delay) depends on the 
scheduling decisions of not only the device 
itself but also the other devices, while the deci-
sions of the other devices cannot be known 
beforehand. Third, the system information (e.g., 
device connectivity, task requirements of the 
devices) may change over time and hence be 
unknown to each device beforehand. In the 
following, we discuss how to address these 
challenges using two candidate methods: a Lya-
punov-based algorithm and a deep reinforce-
ment learning (DRL)-based algorithm.

A Lyapunov-based scheduling algorithm is 
one candidate method that can handle the prac-
tical scenario where the system information is 
unknown beforehand. This algorithm can stabilize 
the queues (of the tasks or subtasks) in the system 
while optimizing the performance objective (e.g., 
minimizing energy consumption). This idea of the 
Lyapunov-based algorithm is inspired by [11] (for 
a 1C model) with some modifi cations addressing 
the 3C resources. In this algorithm, each device 
is modeled as an entity with 3C resources and 
four queues, where the queues correspond to 
downloading, uploading, computation, and D2D 
transmission, respectively. When a mobile device 
has a task, the device requests information on the 
3C resources and queues of its nearby devices, 
and determines its task off loading decisions (e.g., 
downloading/uploading, computation, or cached 
content retrieving). The offloading decision is 
determined by  minimizing a weighted sum of the 

Figure 4. Energy consumption comparison 
between the 3C framework and the 1C/2C 
models.
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energy consumption (if aiming at energy minimi-
zation) and the queue length changes of all the 
neighbor devices. Intuitively, the consideration of 
the changes of queue length is used to reduce 
the chance that a queue becomes empty (which 
implies that the capacity for processing the queue 
is not fully utilized) or overfl ows. It can be proved 
that such a Lyapunov-based scheduling algorithm 
would converge to the system optimal perfor-
mance asymptotically, with an approximation 
error bound that is controllable by the weights 
chosen in the algorithm.

A model-free DRL-based scheduling algorithm 
is another candidate method, where the algo-
rithm is based on the DRL technique proposed in 
[12]. This algorithm can operate without know-
ing the dynamics of the system (i.e., the way that 
the environment reacts to the actions of mobile 
devices), and hence can address the challeng-
es resulting from the coupled 3C resources and 
the strategic interactions of the mobile devices. 
Specifi cally, when a device has a task to process, 
the device decides its action (i.e., how to off load 
the input, computation, and output subtasks of 
the task to nearby devices) based on its locally 
observed state, such as its task requirements and 
the capacity information of its nearby devices. 
Given the observed state, the selected action will 
induce the device with a reward (e.g., which can 
be decreasing in energy consumption or task 
delay). The key idea of the DRL-based algorithm 
is to learn from the history and obtain a neural 
network that can provide a mapping from each 
state to a set of Q-values, where each Q-value 
reflects the expected long-term reward of the 
device if the device chooses an action given 
the state. With such a neural network, the opti-
mal policy of a device is to choose the action 
with the maximum Q-value under its observed 
state. Note that the neural network training can 
be performed off line, so the algorithm does not 
require large computational resources from the 
mobile devices.

Figure 5 shows the normalized energy con-
sumption comparison between the proposed 
DRL-based algorithm and the optimal solution 
(denoted by OPT) under diff erent device connec-
tion probabilities. A larger connection probability 
means that devices can observe more informa-
tion through one-hop information exchange. The 
percentage gap shown in the fi gure is defi ned as 

the energy consumption diff erence between DRL 
and OPT normalized by that of OPT. As shown 
in Fig. 5, when the connection probability is large 
(e.g., 0.8, 1), the percentage gap is smaller than 
10 percent. 

economIc Issues

The 3C resources may be shared among the 
devices owned by diff erent users, but the cost of 
sharing may discourage it. Hence, it is important 
to design a mechanism to provide proper incen-
tives for users to join the collaboration and share 
resources. Designing the incentive mechanism 
in the 3C framework, however, can be challeng-
ing, as it is not always easy to quantify the level 
of contributions of different devices involved in 
completing the same task but contributing diff er-
ent resources.

One candidate incentive mechanism is Nash 
bargaining, which applies to the scenario where 
users coordinate to achieve a social objective (e.g., 
social energy consumption minimization). With the 
help of the Nash bargaining solution, users can 
reach an agreement that specifi es how their devic-
es perform the resource allocation and share the 
benefi ts. This mechanism addresses the aforemen-
tioned challenges by collecting the system infor-
mation and solving a Nash bargaining problem in a 
centralized fashion. The solution can always ensure 
fairness; that is, the scheduling and payment results 
are the same for users who contribute the same 
amount of the same types of resources.

Another candidate mechanism is multi-dimen-
sional auction, inspired by the work in [13] for 
downloading resource sharing. Such an auction 
mechanism applies to the scenario where each 
user has private information (e.g., the cost of exe-
cuting a task or the gain of having a task being 
executed), and a properly designed auction mech-
anism can ensure that users truthfully reveal their 
private information and achieve effi  cient resource 
allocation. Specifi cally, when a device has a task to 
process, it can initiate an auction, and its neighbor 
devices can bid for the opportunities of helping 
that mobile device. Different from the traditional 
single-dimensional auction where each bidder bids 
with a price only, with the multi-dimensional auc-
tion, each bidder bids with multi-dimensional bids. 
The bids include which resources the bidder wants 
to contribute, how much it wants to contribute, 
and how much the bidder wants to be compen-
sated. Due to the submission of multi-dimensional 
bids, such an auction can address the challenge 
resulting from the coupled 3C resources.

Future chAllenGes And open Issues
In addition to the optimization and economic 
issues, we further outline several future challenges 
and open issues. 

Software and protocols should be careful-
ly designed to enable practical implementation 
of the 3C framework. Specifically, the key idea 
of the proposed 3C framework is to generalize 
various tasks into a unified structure, and pool 
the resources of the mobile devices to accom-
plish these tasks jointly. Such a generalization and 
resource pooling should be supported by new 
software and protocols embedded in not only 
mobile devices but also network devices (e.g., 
base stations).

Figure 5. Energy consumption comparison 
between the optimal solution and the DRL-
based algorithm.
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Security and privacy are important in wire-
less networks, especially under the mentioned 
cooperation scenario. Authentication and moni-
toring schemes can help to address the security 
and privacy issues. It is also possible to design a 
blockchain system to ensure the security of the 
transactions of the resources.

Device mobility makes the cooperation groups 
in D2D resource sharing time-varying, and fre-
quently disconnected cooperation links may harm 
the system performance by introducing significant 
signaling overhead. Thus, it is important to pro-
pose effective and robust scheduling algorithms 
that can address the uncertain mobility of the 
devices. Machine learning techniques are candi-
date methods for addressing the device mobility 
problem through analyzing the mobility behaviors 
and trajectories of the mobile devices.

Conclusion
To address the device heterogeneity in IoT sys-
tems, we introduce a joint 3C resource sharing 
framework. This framework allows mobile devic-
es to run different applications to effectively uti-
lize the 3C resources through the coordination 
of D2D transmission. It generalizes a wide range 
of existing models on D2D resource sharing, and 
it improves the 3C resource allocation efficien-
cy through exploiting the heterogeneities of the 
devices and the tasks. We elaborate the optimi-
zation and economic issues of the 3C framework, 
discussing both the key challenges and poten-
tial solutions. The proposed solutions enable the 
implementation of the proposed framework in 
the real world, as they provide practical methods 
for resource optimization and resource sharing 
motivation. We further outline several important 
directions for future research.
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