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AbstrAct

Mobile video traffic accounts for more than 
half of the global mobile data traffic nowadays, 
and the ratio is expected to further increase in 
the near future. However, providing high quality 
of experience for video streaming in mobile net-
works is challenging due to the heterogeneous 
and varying wireless channel conditions. To meet 
the increasing demand of high-quality mobile 
video streaming services, researchers have pro-
posed several cooperative video streaming mod-
els that enable mobile users to download video 
contents cooperatively. The key idea is to pool 
network edge resources so as to either alleviate 
the load on the video servers and the cellular net-
work, or alleviate the impact of channel variations 
and improve resource utilization. In this article, 
we review four types of cooperative video stream-
ing models that pool various network resources 
effectively in different application scenarios. Then 
we focus on the crowdsourced mobile stream-
ing model, which aims to pool users’ download 
capacities in order to alleviate the impact of chan-
nel variations and achieve efficient utilization of 
network resources. We introduce the correspond-
ing optimization issue of efficient resource alloca-
tion and the economic issue of user cooperation. 
We also outline future challenges and open issues 
in cooperative video streaming models.

IntroductIon
With the development of mobile networks and 
mobile devices, users now are capable of enjoy-
ing video streaming services over mobile net-
works. Cisco reported, in February 2016, that the 
mobile video traffic already accounted for 55 per-
cent of total mobile traffic, and it is expected to 
grow at an annual rate of 62 percent in the next 
few years [1]. The heavy video traffic challenges 
mobile network infrastructure and video servers. 
Compared to users in wired networks, mobile 
users experience heterogeneous and time-vary-
ing channel conditions and network resources, in 
the sense that different users will have different 
achievable data rates depending on, for exam-
ple, their network operators and locations. The 
heterogeneity and variation induce challenges for 
providing high-quality, stable, and smooth mobile 
video streaming experiences to mobile users.

To address the challenges, adaptive bit rate 

(ABR) streaming [2] has been proposed and 
widely used for wireless video streaming. Recent 
standards and commercial instances of ABR 
include MPEG Dynamic Adaptive Streaming over 
HTTP, Apple HTTP Live Streaming, and Microsoft 
Smooth Streaming. In ABR, a video source is par-
titioned into multiple small video pieces, called 
segments, and each segment is encoded at mul-
tiple bit rates. Mobile users can choose the bit 
rate of each segment and hence can dynamical-
ly adapt their videos to their heterogeneous and 
time-varying network conditions.

Through a proper bit rate adaptation meth-
od (i.e., how a user should choose the bit rate 
of each segment), ABR enables video streaming 
services to better adapt and utilize a user’s wire-
less resources. The user’s quality of experience 
(QoE), however, is still restricted by the video 
server bandwidth and the user’s own channel 
conditions. The adoption of cloud computing may 
alleviate the load on the video server through off-
loading upload bandwidth to the cloud. Howev-
er, cloud-based video streaming may further add 
additional delay in the system, and does not help 
resolve the limitation due to the user’s own chan-
nel conditions. On the other hand, through edge 
resource pooling in the framework of fog com-
puting, one can effectively integrate the commu-
nication resources of multiple edge devices and 
exploit the diversity of users’ channel conditions. 
Such edge resource pooling can reduce video 
server load (through letting edge devices serve 
video users with their available contents) as well 
as increase network reliability, flexibility, and effi-
ciency, which is especially useful for mobile net-
works with heterogeneous and varying channels.

Inspired by these ideas, researchers have 
proposed several models for cooperative video 
streaming:
• Mobile peer-to-peer (MP2P) model [3], where 

video users partially fulfill the role of servers 
by forwarding their downloaded videos to 
other video users through the Internet

• Device-to-device (D2D) model [4], where 
video users exchange their download-
ed video segments to nearby video users 
through short-distance D2D wireless links

• Bandwidth aggregation (BA) model [5], 
where a video user and his/her nearby idle 
users pool their network resources for this 
single video user’s streaming need
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• Crowdsourced mobile streaming (CMS) 
model [6–8], where nearby video users that 
watch different videos pool their network 
resources to download the videos
In these models, the MP2P model pools peers’ 

uplink network capacities to the Internet to alle-
viate server load; the D2D model pools down-
loaded segments to alleviate server and cellular 
network load; and the  and BA and CMS models 
pool downloaded network resources to increase 
resource efficiency and alleviate the impact of 
channel variations.

In order to effectively support these cooperative 
models, research needs to address three key issues:
• Technical issues: How are real-world cooper-

ative video streaming systems constructed, 
including designing the cooperative struc-
tures and managing the channel interferenc-
es due to cooperations?

• Optimization issues: How is the video 
streaming operation scheduled among mul-
tiple users, including bit rate adaptation and 
resource allocation?

• Economic issues: How are incentive mech-
anisms designed to motivate users to share 
resources cooperatively?
In this article, we provide a comprehensive 

understanding of the cooperative video streaming 
model so as to illuminate the key ideas, challenges, 
and possible solutions for the edge resource pool-
ing approach in fog computing. We first provide 
an overview of several cooperative video stream-

ing models and a further introduction on the key 
issues. We then focus on the CMS model, as it 
considers the most complicated scenario in which 
different video users watch different videos. We dis-
cuss both offline and online scheduling algorithms 
for achieving efficient or nearly efficient resource 
allocation, and describe a truthful incentive mech-
anism that effectively motivates user cooperation. 
Finally, we outline some future challenges and 
open issues for cooperative video streaming.

cooperAtIve vIdeo streAmIng
overvIew oF cooperAtIve vIdeo streAmIng

Cooperative video streaming enables mobile users 
to cooperate and share their wireless links or down-
loaded resources in order to enhance the video 
streaming experiences of some or all of the users. In 
this section, we introduce four types of cooperative 
streaming models and compare their key features.

The MP2P model is the P2P model applied 
in mobile networks. In MP2P, mobile users with 
some downloaded segments can forward those 
segments to other users in need to partially ful-
fill the role of a video server. Figure 1a shows an 
example of the MP2P model: user A downloads 
segment 1 of video a directly from the server, 
and downloads segments 2 and 3 of video a from 
users B and C, respectively. In the D2D model, 
mobile users share their downloaded segments 
with nearby mobile users through D2D wireless 
links, such as WiFi or Bluetooth. As shown in Fig. 
1b, the three users download segments from the 

The MP2P model is 

the peer-to-peer (P2P) 

model applied in 

mobile networks. In 

MP2P, mobile users 

with some downloaded 

segments can forward 

those segments to other 

users in need, to par-

tially fulfill the role of a 

video server.

Figure 1. Cooperative video streaming: a) MP2P model; b) D2D model; c) BA model; d) CMS model.
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severs and share them through D2D links. In the 
BA model, a video user and his/her nearby idle 
users pool their network resources for the sin-
gle video user’s streaming. For example, in Fig. 
1c, user A is the only user who watches a video. 
Users B and C download segments 2 and 3 for 
user A, respectively, and forward them to him/
her through D2D links. In the CMS model, mobile 
video users pool their network resources to satis-
fy all the users’ different video streaming needs. 
Such a model takes care of the load balancing 
issue among mobile users naturally, as it intends 
to properly allocate the network resources among 
mobile users to maximize social welfare. Figure 1d 
shows an example where three users watch differ-
ent videos. User B has a better downlink channel, 
so he/she not only downloads two segments of 
video b for him/herself, but also downloads one 
segment of video a and one segment of video c 
to satisfy the needs of users A and C, respectively.

Table 1 provides further comparisons among 
these models in other dimensions: interaction, 
whether the cooperation happens among remote 
users via the Internet or local users; video session, 
how many users watch videos; and video number, 
how many videos the users watch (if more than 
one, different users may watch different videos).

key Issues

Here we discuss three key issues of cooperative 
video streaming in a bit more detail.

The first type are technical issues in constructing 
these cooperative video streaming models. First, 
how do we enable cooperative structures? For the 
MP2P model, although wired P2P structure can 
be implemented in MP2P, MP2P has to address 
new challenges: varying wireless channel (mostly 
caused by device mobility) and limited device stor-
age capacity. The varying channels make it hard for 
uploading users to maintain stable upload speeds, 
and the limited device storage capacity makes it 
unreasonable to store a large number of segments 
in mobile devices. For the other three models, the 
key challenges include how to discover and estab-
lish D2D connections with limited device energy 
capacity, and how to enable simultaneous data 
transmission and reception through multiple inter-
faces (e.g., downlink cellular interface and D2D 
interface). There have been several recent efforts 
in designing cooperative structures to overcome 
these challenges, such as [5] for the BA model. 
Second, how do we manage the interference in 
the cooperative frameworks, for example, the inter-
ference between cellular and D2D links as well 
as the interference among D2D links themselves? 
This issue is most relevant in the context of D2D 

communications; so many existing proposals (e.g., 
[9]) can be implemented. For example, spectrum 
splitting, which separates the spectrum usage for 
cellular and D2D links, can be used for handling 
the interference between cellular and D2D links, 
and power control and radio resource allocation, 
which optimize the power and spectrum alloca-
tion, respectively, among multiple D2D pairs, can 
be used for handling the interference among D2D 
links.

The second type are optimization issues on bit 
rate adaptation — how video users select the bit rates 
of their segments to enhance their video quality of 
experience — and resource allocation — how the 
network resources should be allocated to achieve 
certain objectives, such as social welfare maximi-
zation. The common key challenge for addressing 
both issues is the asynchronous downloading oper-
ation among users. Cao et al.  [4] studied a D2D 
group formation problem for scheduling video seg-
ments among users in the D2D model. Lin et al. [6] 
attempted to overcome this issue by studying a vir-
tual synchronous downloading operation for under-
standing the bit rate adaptation and the resource 
allocation in the asynchronous CMS model. How-
ever, completely and effectively addressing the asyn-
chronous operation is still an open issue.

The third type are economic issues on incen-
tive mechanism design. Sharing resources is 
always costly, especially for mobile users who 
have limited communication, storage, and battery 
resources. Hence, we need an effective incentive 
mechanism to motivate users to share and coop-
erate. A key challenge for incentive mechanism 
design is private user information. The issue is par-
ticularly complicated in cooperative video stream-
ing because the video segments are encoded at 
multiple bit rates, and users can have different pri-
vate valuations for the segment encoded at each 
bit rate. Kang et al. [3] proposed a credit-based 
incentive mechanism for MP2P streaming, with 
the goal of jointly maximizing the revenue of 
the helper and the utility of the help receiver. 
The authors in [3] focused on the uploading and 
downloading bandwidth allocation, while ignoring 
the situation of multi-bit-rate encoded streaming. 
Ming et al. [7] proposed a truthful auction mech-
anism in the CMS model, with the goal of max-
imizing social welfare through proper resource 
allocation and bit rate adaptation, simultaneously 
providing sufficient motivations for the helper.

crowdsourced mobIle streAmIng
Among the four cooperative models, the CMS 
model focuses on the most general (and arguably 
most commonly encountered) scenario in which 

Table 1. Model comparisons.

Models MP2P model [3] D2D model [4] BA model [5] CMS model [6–8]

Pooled resources Upload capacity Downloaded segments Download capacity Download capacity

Key objective
Alleviate server 

congestion
Alleviate server and 

cellular load
Increase resource 

efficiency
Alleviate channel variations; 
increase resource efficiency

Scenario

Interaction Internet Local Local Local

Video session Multiple Multiple One Multiple

Video number One One One Multiple
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different users watch different videos. In this 
model, mobile users not only download videos 
asynchronously, as in the BA and D2D models, 
but also request and watch videos asynchronously 
from different video servers. Hence, it is challeng-
ing to properly schedule the asynchronous coop-
eration and satisfy all the users’ heterogeneous 
requirements. It can also be difficult to accurately 
evaluate users’ contributions for helping other 
users with different videos and bit rate require-
ments. In this section, we concentrate on the 
CMS model, discussing its optimization and eco-
nomic issues.

In the CMS model, mobile users pool their 
resources for more effective video stream-
ing. Through effective allocation of the network 
resources of all the users, the crowdsourced frame-
work can reduce the impact of cellular link vari-
ations at individual levels and exploit the positive 
network effects (i.e., users’ heterogeneous cellular 
links and video requirements). Social welfare in 
the CMS model is the total welfare achieved by all 
users, and is defined as the difference between the 
users’ QoE and the users’ cost. The QoE depends 
on video qualities, rebufferings, and quality deg-
radations, while the cost depends on energy con-
sumption and cellular data payment [10].

Next we introduce solutions to optimization 
issues and economic issues in the CMS model. 
For the optimization issues, we aim to properly 
schedule the cooperation and bit rate adaptation 
to maximize social welfare in an offline sched-
uling operation benchmark and online sched-
uling operation. For each video user, we need 
to decide when and for whom he/she is going 
to download segments at what bit rates. For the 
economic issues, we aim to design an incentive 
mechanism that can motivate a user to truthfully 
reveal the user’s private information and achieve 
social welfare maximization. For each video user, 
we need to decide how much he/she should be 
paid when he/she downloads video segments 
for different users at different bit rates. Note that 
although both issues involve the social welfare 
maximization problem, to resolve the economic 
issue we need to handle the private user informa-
tion, such as buffer size and bit rate preference, 
while the optimization issue focuses on social wel-
fare maximization under the assumption of com-
plete (or public) user information. In distributed 
scheduling, as in the online scheduling optimiza-
tion section, the public user information can be 
obtained through information exchange among 
nearby users.

oFFlIne schedulIng optImIzAtIon

Offline scheduling optimization, as a benchmark, 
aims at maximizing social welfare assuming com-
plete (or public) network information and user 
information. Here, the network information refers 
to all the users’ historical and future cellular link 
capacities, and such information is known to all 
users publicly. In the offline case, we discuss the 
theoretical social welfare performance bound of the 
proposed crowdsourced system, which serves as a 
benchmark for the online scheduling solutions.

Directly solving the social welfare maximization 
problem even in the offline case is challenging. First, 
the video downloading of each user involves seg-
mented operation in ABR streaming. Specifically, as 
illustrated in Fig. 2b, two users download new seg-
ments in an asynchronous manner, where the down-
loading time of a segment depends on the amount 
of data and the channel condition of the download. 
Second, social welfare optimization is a mixed-inte-
ger program, containing both discrete variables (e.g., 
bit rate and user set) and continuous variables (e.g., 
downloading start time), and has integral operations 
(resulting from calculating the download volumes of 
the varying cellular channels). These features make 
solving the problem challenging.

To understand the offline scheduling, in [6] we 
proposed a virtual time-slotted operation, under 
which we can characterize the upper bound and 
lower bound of the maximum social welfare of 
the original asynchronous operation. In the virtual 
time-slotted operation, as in Fig. 2a, two users sched-
ule download segments slot by slot in a partially syn-
chronized fashion. With this virtual operation, we can 
focus on the segment downloading of each user in 
each time slot: how many segments to download, for 
which users, and at what bit rates. The optimization 
problem in the time-slotted operation can be formu-
lated as a linear integer programming problem, and 
can be solved by many classic methods.

We can show that the performance of the seg-
mented operation is upper- and lower-bounded 
by the time-slotted operation with proper system 
parameter choices. Let b be the segment length 
in terms of playback time. The lower bound of the 
maximum social welfare of the segmented oper-
ation (Fig. 2b) is the time-slotted system with the 
same video segment length (Fig. 2a), because the 
downloading operation under the time-slotted 
operation is feasible under the segmented oper-
ation, but not vice versa. The upper bound of the 
maximum social welfare of the segmented oper-
ation (Fig. 2b) is the time-slotted system with the 
segment length approaching zero (i.e., Fig. 2d), 

Figure 2. Upper-bound and lower-bound of the maximum social welfare of the segmented operation.
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through dividing an integral value N that approach-
es infinity. Specifically, considering the segmented 
operation, the social welfare will be non-decreasing 
when the segment length b decreases (comparing 
Figs. 2b and 2c), because the downloading opera-
tion under the larger segment length is still feasible 
when the segment length decreases, but not vice 
versa. Moreover, when segment length approach-
es zero, the operation under time-slotted operation 
can be equivalently achieved under the segmented 
operation (comparing Figs. 2c and 2d). Therefore, 
we can obtain the upper-bound and lower-bound 
social welfare of the asynchronous segmented 
operation through calculating the social welfare of 
the time-slotted operation with different choices of 
segment lengths.

onlIne schedulIng optImIzAtIon

In practice, however, network condition varies 
randomly over time, so it is difficult to obtain 
future and global network information, as 
assumed in offline scheduling. This motivates us 
to study the practical online scheduling problem, 
where the network information is incomplete (i.e., 
only historical and current network information is 
available). Note that the user information is still 
publicly known. The key question is how do we 
schedule the segment downloading among multi-
ple users and choose the bit rate of each segment 
in order to maximize the (expected) social welfare, 
considering the uncertain and stochastically chang-
ing future network information?

We propose an online scheduling algorithm 
based on the Lyapunov optimization [11] frame-
work: When a user is ready to download a new 
segment, he/she will decide on the segment receiv-
er and the segment bit rate in order to minimize an 
objective function named drift-plus-penalty, which 
corresponds to all the users’ buffer changes minus 
the social welfare times an adjustable coefficient. 
Intuitively, the objective is to enhance the social 
welfare while balancing the users’ buffer sizes. 
Consideration of the buffers will help avoid packet 
drops caused by buffer overflows and video freez-
ing due to empty buffers. Consideration of social 
welfare will incorporate various factors that affect 
users’ QoE, such as bit rate satisfaction and bit rate 
fluctuation loss, and downloading and transmitting 
cost. We show that this algorithm converges to 
the theoretical performance bound of the offline 
scheduling system asymptotically, with an approxi-
mation error bound that is controllable through the 
adjustable coefficient mentioned above.

We test the performance of the online algorithm 
through numerical examples of 50 video users. In 
each simulation run, each user has a randomly gen-
erated cellular link capacity simulated based on 
real-world data traces (provided by BesTV, an over-
the-top video service provider in China) that cor-
respond to the given average link capacity. Figure 
3 shows the comparisons of average social wel-
fare among the Lyapunonv-based online algorithm, 
the bandwidth-based adaptation algorithm [12] (in 
which receiver and bit rate are chosen according 
to the downloader’s bandwidth), and buffer-based 
adaptation algorithm [13] (in which receiver and 
bit rate are chosen according to all users’ buffer 
sizes). We also compare the cooperation scenario 
(users cooperate based on the CMS model) and 
the noncooperation scenario (users do not coop-

erate). The numerical results in Fig. 3 suggest that 
cooperation always increases the average social 
welfare compared to the noncooperative case, and 
our proposed Lyapunov-based algorithm always 
has the largest average social welfare compared to 
the other two benchmark algorithms.

economIc IncentIve mechAnIsm

Providing help to other users can be costly, so 
mobile users may not be willing to participate in 
CMS to share their network resources. Hence, we 
propose an incentive mechanism to motivate user 
cooperation. In this section, the network infor-
mation is incomplete, and user information is pri-
vate. The key question is for each segment to be 
downloaded, who is the segment receiver, what is 
the segment bit rate, and how much should the 
receiver compensate the downloader?

The incentive mechanism design is challenging 
in the CMS model due to users’ private valuations 
on multi-bit-rate encoded segments. Specifical-
ly, a user’s preference for segment bit rate and 
his/her corresponding valuation is his/her private 
information and may vary over time. The diverse 
and varying private valuation induces difficulties in 
evaluating downloaders’ contributions to cooper-
ation and determining the proper incentive levels.

To handle the issue of private valuations, in [7] 
we proposed an auction-based mechanism for 
the CMS model: When a user is ready to down-
load a segment, he/she will initiate an auction to 
determine the segment receiver, the segment bit 
rate, and the payment. The key here is that each 
bidder has to specify a multidimensional bid on 
the segment to be downloaded, consisting of his/
her intended segment bit rate and the price he/
she is willing to pay. This motivates us to consider 
a multidimensional auction [14].

Figure 4 illustrates an example of a sec-
ond-score multidimensional auction mechanism. 
First, each bidder (potential receiver) submits a 
two-dimensional bid, consisting of the intended 

Figure 3. Social welfare comparisons among the Lyapunov-based algorithm, 
bandwidth-based algorithm, and buffer-based algorithm; and between 
cooperation and noncooperation.
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bit rate and the intended price for the segment to 
be downloaded by the downloader. Second, the 
auctioneer transforms the two-dimensional bids 
into one-dimensional values through an additive 
score function (i.e., the price minus an increasing 
function of the bit rate). Finally, the auctioneer 
determines the auction results — the winner, the 
bit rate of the segment to be downloaded, and 
the payment — based on the second score rule. In 
such an auction, we show that the bidders always 
truthfully reveal their valuations through submit-
ting their intended prices. Moreover, the score 
function can be flexibly chosen to achieve certain 
objectives, such as social welfare maximization or 
the auctioneer’s payoff maximization. For exam-
ple, when the score function is defined as the sub-
mitted price minus the cost of downloading the 
segment with the submitted bit rate, this auction 
mechanism will maximize social welfare.

Next we show the performance of the pro-
posed auction mechanism in numerical examples 
with 50 users. Each user wants to watch a 50-s 
video, and some of the users are disconnected 
to the Internet. (In each simulation run, each user 
has a randomly generated cellular link capacity 
simulated based on real-world data traces pro-
vided by BesTV.) We compare the social welfare 
between a cooperation scenario (users cooper-
ate based on the CMS model) and a noncoop-
eration scenario (users do not cooperate). In the 
cooperation scenario, we also show users’ aver-
age welfare obtained through downloading seg-
ments (denoted by D), that is, as a downloader, 
the user’s received compensation (payment) minus 
his/her cost of downloading, and users’ average 
welfare obtained through receiving segments 

(denoted by R), that is, as a receiver, the user’s 
utility achieved due to video consumption minus 
his/her payment to the downloaders. Note that 
a user may act as both downloader and receiv-
er at different time instances, so a user’s welfare 
contains both downloading welfare and receiving 
welfare. The sum of all the users’ downloading 
welfare and receiving welfare is the social welfare. 
Figure 5 shows that as the percentage of users 
without the Internet increases, the social welfare 
in the noncooperation scenario decreases dramat-
ically, while the social welfare in the cooperation 
scenario is relatively stable, and the decrease is 
only 10.9 percent when the percentage of dis-
connected users changes from 0 to 60 percent. 
Moreover, as the percentage of users without the 
Internet increases, the welfare achieved through 
downloading increases due to the fact that more 
users require help, and the welfare achieved 
through receiving decreases due to the reduction 
of network resources and increased competition.

Moreover, to reduce the overhead due to the 
frequently initiated auction, we also proposed an 
incentive mechanism that addresses multi-object 
segment allocation. Due to space limits, we refer 
readers to [8] for details.

demonstrAtIon system

We further constructed a demo system using Rasp-
berry PI Model B+ (https://www.raspberrypi.org/)
[8]. In the demo system, Raspberry PIs represent 
the mobile devices, each of which is equipped 
with an LTE USB modem for LTE connections and 
a WLAN adapter for WiFi connections. The demo 
system can support dynamic group joining and 
leaving through UDP broadcasting, so there is 
no need for centralized control. After forming a 
group, the mobile devices cooperatively download 
video segments via LTE, send signaling messages 
and forward video segments to other devices (if 
needed) through TCP transmissions. The cooper-
ation is scheduled using our proposed incentive 
mechanism. Experiments over the demo system 
showed that the additional latency caused due to 
the auction-based resource allocation mechanism 
is 100 ms per auction. In practice, the length of 
a video segment is often 2, 5, or 10 s; hence, the 
implementation overhead of the auction mecha-
nism is between 1 and 5 percent.

Future chAllenges And open Issues
In spite of recent efforts on addressing technical, 
optimization, and economic issues, there are still 
many future challenges and open issues for coop-
erative video streaming.

Human mobility makes user cooperation 
groups time-varying, hence making it harder to 

Figure 4. An example: second-score multidimensional auction.
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Figure 5. Social welfare comparison between 
cooperation and noncooperation. D: welfare 
obtained through downloading segments; R: 
welfare obtained through receiving segments. 
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schedule resources effectively. Frequent discon-
nections of communications among users can 
significantly increase the signaling overhead of 
the cooperation. For example, a helper may find 
a receiver disconnected after downloading the 
requested segment. Thus, it is important to design 
an effective and robust scheduling algorithm by 
taking into consideration the uncertainty intro-
duced by user mobility.

Social relationship reflects each user’s repu-
tation and preference over cooperation. Specifi-
cally, a user with a better reputation in previous 
cooperation may attract more helpers, and friends 
in the real world tend to cooperate since they 
are familiar with each other. The consideration of 
social relationship can make the incentive mecha-
nism more effective.

Security and privacy are always crucial in wire-
less networks, especially when mobile users share 
local network resources and individual informa-
tion frequently. It is important to design proper 
authentication and monitoring schemes, which 
should be designed to support real-time video 
streaming services together with distributed and 
massive D2D connections.

Interventions of content providers and network 
operators: Most researchers mainly focus on the 
cooperation among video users, without consid-
ering the potential involvement of network oper-
ators and video content providers. In practice, 
network operators may be reluctant to support 
the crowdsourced networking scheme among 
users, and some network operators (e.g., AT&T 
in the United States) have started to charge addi-
tional fees for “tethering” among users. Consider-
ing such an intervention, Meng et al. [15] provide 
an initial study on deriving the optimal data and 
tethering price for the crowdsourced networking 
scheme. Moreover, video content providers may 
not be willing to support user cooperation, for 
example, when a user with a certain monthly sub-
scription for an unlimited video plan downloads 
video for another user with a usage-based video 
subscription plan. Hence, to achieve the cooper-
ation of users, we need to consider not only the 
incentives for users but also the incentives for the 
content providers and network operators.

conclusIon
Cooperative video streaming promotes mobile 
video streaming services by enabling mobile users 
to provide services (or resources) to each other 
or enabling mobile users to pool their network 
resources. In this article, we introduce four types 
of cooperative models and discuss key issues for 
model implementation. We further concentrate 
on the CMS model, which is applicable for a 
general scenario in which different users watch 
different videos, and introduce the optimization 
and economic issues and solutions in this model. 
We also outline some future challenges and open 
issues on which researchers can further work.
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