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Abstract—Adaptive bitrate (ABR) streaming enables video
users to adapt the playing bitrate to the real-time network
conditions to achieve the desirable quality of experience (QoE). In
this work, we propose a novel crowdsourced streaming framework
for multi-user ABR video streaming over wireless networks. This
framework enables the nearby mobile video users to crowdsource
their radio links and resources for cooperative video streaming.
We focus on analyzing the social welfare performance bound of
the proposed crowdsourced streaming system. Directly solving
this bound is challenging due to the asynchronous operations of
users. To this end, we introduce a virtual time-slotted system with
the synchronized operations, and formulate the associated social
welfare optimization problem as a linear programming. We
show that the optimal social welfare performance of the virtual
system provides effective upper-bound and lower-bound for
the optimal performance (bound) of the original asynchronous
system, hence characterizes the feasible performance region of
the proposed crowdsourced streaming system. The performance
bounds derived in this work can serve as a benchmark for the
future online algorithm design and incentive mechanism design.

I. INTRODUCTION

A. Background and Motivations

Adaptive BitRate (ABR) streaming [1] is a widely-used
technology for video streaming over large distributed HTTP
networks such as Internet. The key idea is to enable video
players to adapt the playing bitrate (which corresponds to
the video quality such as resolution) to the real-time network
conditions. To achieve the flexible bitrate adaptation, a source
video is first partitioned into a sequence of short multi-second
segments, each encoded at multiple pre-defined bitrates. Then,
the bitrate adaptation of each video user can be achieved
by choosing different bitrates for different segments. Clearly,
with proper bitrate adaptations, video users can achieve the
desirable tradeoff between the quality of experience (QoE)
and the streaming cost (e.g., energy consumption).

While most of the existing work on ABR streaming focused
on the bitrate adaptation of a single user [2]–[9], in this
work we consider a more general scenario of multi-user video
streaming over wireless cellular networks. Note that in a
multi-user scenario, the QoE of each video user is affected
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Fig. 1. Crowdsourced Video Streaming Model.

not only by the stochastically changing of his own network
condition (such as wireless channel fading), but also by the
potential resource competition and interference of other users
[10]. Without proper coordination or cooperation among users,
such resource competition and multi-user interference may
greatly degrade the network condition (e.g., leading to network
congestion), hence increase the streaming cost (due to, for
example, the increased transmission power or repeated data
retransmissions) and degrade the QoE of video users. How-
ever, traditional single-user based bitrate adaptation methods
in [2]–[9] often fail to provide a desirable QoE for video users
in the multi-user scenario, due to the lack of considerations of
the potential cooperation among video users.

In this work, we propose a novel user cooperation frame-
work, called crowdsourced (video) streaming, for multi-user
video streaming over wireless cellular networks, based on
the user-provided networking (UPN) technology [11]–[13].
The key idea is to enable nearby mobile users to form a
cooperative group (via WiFi or Bluetooth) and crowdsource
their cellular radio connections and resources for cooperative
video streaming.1 Namely, in a cooperative group, each user
can download video segments for other users using his cellular
link and resources and download his own video segments
through other users’ links and resources. Figure 1 illustrates
such a crowdsourced streaming model with a cooperative user
group {1, 2, 3}, where user 1 downloads one segment for user
2 and two segments for user 3 (who has no available cellular
link), and user 2 downloads one segment for user 3.

B. Solution and Contributions

Specifically, we focus on studying the users’ cooperative
streaming operations (including download scheduling and bi-
trate adaptation) and analyzing the theoretical social welfare
performance bound of such a crowdsourced streaming system.

1The idea of crowdsourcing has also been applied in other applications
such as wireless community networking [14] and mobile crowdsensing [15].
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Namely, for each video user, when and for whom he is going to
download the video segments at which bitrates, for the purpose
of maximizing the social welfare performance?

We first formulate the users’ cooperative streaming oper-
ations in the crowdsourced system and the associated social
welfare optimization problem. The solution of such a problem
can provide the theoretical social welfare performance bound
of the crowdsourced system. However, directly solving this
bound is challenging due to the asynchronous operations of
users as well as the mixed-integer nature of the problem.

To this end, we introduce a virtual time-slotted system
with the synchronized operations, and formulate the associated
social welfare optimization problem as a linear programming
(which can be solved efficiently with many standard methods).
We show that with proper choices of time parameters, the
optimal social welfare performance of the virtual time-slotted
system provides effective upper-bound and lower-bound for
the optimal performance (bound) of the original asynchronous
system, which leads to the feasible performance region of the
proposed crowdsourced streaming system. In summary, we list
the key contributions of this work as follows.
• Novel Model: To our best knowledge, this is the first work

that proposes a crowdsourced streaming framework for
multi-user cooperative video streaming. This framework
enables mobile video users to crowdsource their radio
connections and resources for cooperative video stream-
ing, hence can increase the users’ QoE.

• Performance Bound Analysis: We analyze the theoreti-
cal social welfare performance bound of the proposed
crowdsourced system comprehensively, overcoming the
challenging issue of asynchronous operations by intro-
ducing a virtual time-slotted system.

• Practical Insights: The performance bound analysis in
this work is an important first-step towards the online
algorithm design and incentive mechanism design for a
crowdsourced streaming system, where the performance
bounds in this work can serve as a benchmark.

The rest of the paper is organized as follows. In Section II,
we present the system model. In Section III, we provide the
problem formulation. In Section IV, we propose the virtual
time-slotted system and the performance bound analysis. In
Section V, we conclude this work and discuss the future work.

II. SYSTEM MODEL

A. Network Model

We consider a set N , {1, 2, ..., N} of mobile video users,
and each user desires to watch a video (on his smartphone) via
wireless cellular network. Users move randomly in a certain
area, and nearby users can form a cooperative group (via WiFi)
and crowdsource their radio connections and resources for
cooperative video streaming.2 We refer to such a multi-user
cooperative video streaming scheme as crowdsourced (video)

2We assume that some well-designed incentive mechanisms (e.g., Nash
bargaining [17]) have been adopted such that all users are willing to participate
in such a crowdsourced system to help others.

streaming. Figure 1 illustrates such a crowdsourced streaming
model with a cooperative user group {1, 2, 3}.

We consider the operation in a period of continuous time
T , [0, T ], where t = 0 is the initial time and t = T is the
ending time. Let hn(t) > 0 denote the cellular link capacity
of user n at time t, and en,m(t) ∈ {0, 1} denote whether
users n and m are close enough at time t such that they can
connect with each other via WiFi (hence help each other). We
refer to {(hn(t), en,m(t)),∀m,n ∈ N , t ∈ T } as the network
information, which varies randomly over time.

B. Video Streaming Model

We consider a typical ABR streaming standard [1], where
a single source video file is partitioned into multiple segments
and delivered to a video user using HTTP. The key features
of this ABR streaming model are summarized below.

(i) Video Segmenting: A source video file is divided into a
sequence of small segments, each containing a short interval
of playback time (e.g., 2–10 seconds) of the source video,
which is possibly several hours in term of the total duration.
A user downloads the video segment by segment.

(ii) Multi-Bitrate Encoding: Each segment is encoded at
multiple bitrates, each corresponding to a specific quality such
as resolution. A user can select different bitrates for different
segments according to real-time network conditions.

(iii) Data Buffering: Each downloaded segment is first saved
in a buffer (e.g., 20–40 seconds) at the user’s device, and then
fetched to the video player sequentially for playback.

We denote βn > 0 as the segment length (in seconds) of user
n’s video, Qn > 0 as the maximum buffer size (in seconds)
of user n’s device, and Rn , {R1

n, ..., R
Z
n } as the set of

bitrates (in Mbps) available for user n, which depends on both
the sever-side protocols and the user-side parameters such as
device type and video player.

III. PROBLEM FORMULATION

In this section, we characterize the users’ cooperative video
downloading operations in the crowdsourced streaming model,
and formulate the associated optimization problem.

Specifically, with the ABR streaming, each source video is
downloaded segment by segment. Namely, each user starts to
download a new segment (with a specific bitrate) only when
completing the existing segment downloading. Hence, users
operate in an asynchronous manner, as they may complete
segment downloading at different times. We refer to such an
operation scheme as the segmented download operation.

A. Downloading Sequence

With the segmented operation, each user n’s downloading
operation can be characterized by a sequence:

Sn ,
{
sn[1], sn[2], ..., sn[k], ...

}
, (1)

with each element sn[k] denoting the information of the k-th
downloaded segment, including the segment owner u, bitrate
level z, bitrate r = Rzu, download start time ts, and end time
te. Namely, we can write sn[k] as a tuple

sn[k] = (u, z, r, [ts, te]) .
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To distinguish different segments, we will also write sn[k] as
{un[k], zn[k], rn[k], tsn[k], t

e
n[k]} when needed.

Next we provide the constraints for a feasible downloading
sequence Sn of user n.

(i) Timing Constraint: As users download videos segment
by segment, we have the following timing constraint:

C.1 : ten[k] ≤ t
s
n[k+1], ∀k = 1, ..., |Sn|;

A strict inequality implies that user n waits for some time
before starting to download the next segment sn[k+1], e.g.,
when the buffers of all users are full (see Section III-B).

(ii) Capacity Constraint: Each segment sn[k] = (u, z, r,
[ts, te]) consists of r · βu Mbits of video data, and is down-
loaded by user n within time interval

[
tsn[k], t

e
n[k]

]
. Hence, we

have the following cellular link capacity constraint:

C.2 : r · βu ≤
∫ ten[k]

ts
n[k]

hn(t)dt, ∀k = 1, ..., |Sn|,

where hn(t) is the real time cellular link capacity (in Mbps)
of user n at time t, and changes with time.

(iii) Encounter Constraint: Each user can only download
data for nearby “encountered” users. Hence, a segment with
sn[k] = (u, z, r, [ts, te]) with n 6= u is feasible only if users n
and u are encountered during the interval

[
tsn[k], t

e
n[k]

]
, i.e.,

C.3 : en,u(t) = 1, t ∈
[
tsn[k], t

e
n[k]

]
, ∀k = 1, ..., |Sn|.

B. Receiving Sequence

Given the feasible downloading sequences of all users, i.e.,
Sn,∀n ∈ N , we can derive the segment receiving sequence
of each user m as follows:3

Ŝm =
⋃

n∈N ,k∈{1,...,|Sn|}:un[k]=m

{
sn[k]

}
(2)

We assume that a proper download scheduling has been
adopted, such that there is no repeated segments within Ŝm,
and all segments in Ŝm are sorted according to the playback
order. We denote the k-th segment in the reordered Ŝm by
ŝm[k]. Then, we can write the receiving sequence of user m as:

Ŝm ,
{
ŝm[1], ŝm[2], ..., ŝm[k], ...

}
, (3)

with each element ŝm[k] =
(
û, ẑ, r̂, [t̂s, t̂e]

)
denoting the

information of the k-th segment played by user m. Similarly,
we will write ŝm[k] as {ûm[k], ẑm[k], r̂m[k], t̂

s
m[k], t̂

e
m[k]} when

needed. It is easy to see that ûm[k] = m for all ŝm[k] ∈
Ŝm. To facilitate the later analysis, we further assume that
t̂em[k] ≤ t̂

e
m[k+1], ∀k = 1, ..., |Ŝm|, that is, user m receives the

segments in Ŝm sequentially.4

As mentioned previously, each received segment is first
stored in a buffer at the user’s device, and then fetched to

3We do not consider the WiFi transmission time here, as the WiFi link
capacity (typically tens to hundreds Mbps) is usually much larger than a
video bitrate (typically low than than two Mbps).

4Note that this can always be achieved by a proper schedule of downloading
sequences with the full network information. For example, if t̂e

m[k]
>

t̂e
m[k+1]

, i.e., the k + 1-th segment is received before the k-th segment, we
can simply change their downloading orders.

the video player sequentially for playback. Let qm[k] denote
the buffer level (in seconds) of user m when receiving the k-th
segment, i.e., at the time t̂em[k]. Then, we have the following
buffer update rule for user m:

qm[k] =
[
qm[k−1] −

(
t̂em[k] − t̂

e
m[k−1]

)]+
+ βm, (4)

where [x]+ = max{0, x}. Here t̂em[k] − t̂em[k−1] is the time
interval between receiving of ŝm[k − 1] and ŝm[k], during
which a period t̂em[k] − t̂

e
m[k−1] of video is played back and

removed from the buffer; βm is the segment length (playback
time) of the newly received segment ŝm[k].

Since each user m’s buffer size is limited at Qm (seconds),
we have the following buffer constraint:

C.4 : 0 ≤ qm[k] ≤ Qm, ∀k = 1, ..., |Ŝm|.

C. User Payoff

The payoff of a video user mainly consists of two parts: a
utility function capturing the user QoE for video service, and
a cost function capturing the user’s energy consumption for
both data downloading and data local exchanging.

1) Quality-of-Experience (QoE): Users often desire for a
higher video quality without frequent quality changes and
freezes during playback. Hence, a user’s QoE mainly depends
on the video quality, quality fluctuation, and rebuffering.

(i) Video Quality: A higher video quality (bitrate) brings a
higher QoE for users. Let gn(r) denote the value that user
n achieves from bitrate r during one unit of playback time.5

Then, the total value that user n achieves from all received
segments Ŝn (each with a playback time of βûn[k]

= βn) is:

Vn(Ŝn) ,
|Ŝn|∑
k=1

gn
(
r̂n[k]

)
· βn. (5)

Obviously, gn(·) is an increasing function (as video quality
monotonically increases with bitrate). As an example, we can
adopt the following value function [16]: gn(r) = log(1+θn·r),
where θn > 0 is a user-specific evaluation factor capturing user
n’s desire for a high quality video service.

(ii) Quality Fluctuation: The change of quality (bitrate)
during playback decreases the users’ QoE, especially when
the quality is degraded. In this work, we assume that there
is a value loss proportional to the bitrate decrease once the
quality is degraded, while there is no value loss when the
quality is upgraded [16]. Let φQDEG

n > 0 denote the value loss
of user n for one unit (in Mbps) of bitrate decrease. Then, the
total value loss of user n induced by quality degradation is

LQDEG
n (Ŝn) ,

|Ŝn|∑
k=2

φQDEG
n ·

[
r̂n[k−1] − r̂n[k]

]+
, (6)

where [x]+ = max{0, x}. Here r̂n[k−1] > r̂n[k] indicates that
a quality degradation occurs between ŝn[k−1] and ŝn[k], with
a bitrate decrease of r̂n[k−1] − r̂n[k].

5Precisely speaking, this value is a function of quality. Nevertheless, under
the assumption that there is a distinct and monotonic relationship between
bitrate and quality, we write it as function of bitrate for notational convenience.

2016 Annual Conference on Information Science and Systems (CISS)

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 23,2021 at 05:05:22 UTC from IEEE Xplore.  Restrictions apply. 



(iii) Rebuffering: If a video buffer is exhausted before
receiving a new segment, the video player has to freeze the
playback and rebuffer the video for a certain time. Such a
freeze during playback is called rebuffering. The rebuffering
(freeze) during playback greatly affects the users’ QoE. By
the buffer update rule (4), a rebuffering occurs when

qn[k−1] < t̂en[k] − t̂
e
n[k−1],

with a detailed rebuffering time t̂en[k] − t̂
e
n[k−1] − qn[k−1]. Let

φREBUF
n > 0 denote the value loss of user n for one unit of

rebuffering time. Then, the total value loss of user n induced
by video rebuffering is

LREBUF
n (Ŝn) ,

|Ŝn|∑
k=2

φREBUF
n ·

[
t̂en[k] − t̂

e
n[k−1] − qn[k−1]

]+
. (7)

Based on the above, we can define the utility of each user
n under a receiving sequence Ŝn as follows:

Un(Ŝn) , Vn(Ŝn)− LQDEG
n (Ŝn)− LREBUF

n (Ŝn). (8)

2) Energy Cost: Users incur some energy cost in video
streaming. Such energy cost mainly includes the energy con-
sumption for data downloading on cellular links, and energy
consumption for data exchange over local WiFi links.

(i) Energy Consumption for Video Downloading (via Cel-
luar and Internet): When downloading data via the cellular
link (and Internet), users’ energy consumption depends on both
the downloading time and the downloaded data volume [18].
Let cTIME

n ≥ 0 denote the time-related energy consumption
factor of user n (i.e., for each unit of downloading time),
and cDATA

n ≥ 0 denote the volume-related energy consumption
factor of user n (i.e., for each unit of downloaded data).
Then, the energy consumption of user n for downloading video
contents via cellular links and Internet is [18]:

ECELL
n (Sn) ,

|Sn|∑
k=1

(
cTIME
n · (ten[k] − t

s
n[k]) + cDATA

n · rn[k] · βun[k]

)
.

(ii) Energy Consumption for Video Exchanging (via WiFi):
When downloading a segment for others, the user needs to
transmit the data to the segment owner via the local WiFi
link, the energy consumption of which also depends on the
transmitting time and the transmitted data volume [18]. Let
wTIME
n ≥ 0 and wDATA

n ≥ 0 denote the time-related and volume-
related energy consumption factors of user n on the WiFi
link, respectively. The energy consumption of user n for video
exchanging on WiFi link is [18]:

EWIFI
n (Sn) ,

|Sn|∑
k=1

(
wTIME
n · 0 + wDATA

n · rn[k] · βun[k]

)
·1(un[k] 6= n),

where the indicator function 1(un[k] 6= n) = 1 if un[k] 6=
n (i.e., the segment sn[k] is downloaded for others), and 0
otherwise. Here we assume that the WiFi transmission time
of a single segment is small and hence negligible.

Based on the above, we can derive the total energy con-
sumption of each user n under a downloading sequence Sn
and receiving sequence Ŝn as follows:

Cn(Sn, Ŝn) , ECELL
n (Sn) + EWIFI

n (Sn). (9)

3) Payoff: The payoff of user n, denoted by Pn, is defined
as the difference between utility (capturing the QoE of users)
and cost (capturing the energy consumption), i.e.,

Pn(Sn, Ŝn) ,Un(Ŝn)− Cn(Sn, Ŝn) (10)

The social welfare is the aggregate payoff of all users, i.e.,

W (S1, ...,SN ) ,
N∑
n=1

Pn(Sn, Ŝn), (11)

where Ŝn can be derived from Sn,∀n ∈ N .

D. Problem Formulation

We consider an ideal scenario with complete network infor-
mation in this work, and formulate the following offline social
welfare maximization problem:6

max
{Sn,n∈N}

W (S1, ...,SN ),

s.t. C.1 ∼ C.4.
(12)

The solution of (12), denoted by W ∗, provides the theoretical
performance bound (in term of social welfare) of the proposed
crowdsourced system. However, directly solving (12) is very
challenging due to the following reasons. First, users operate in
an asynchronous manner. Namely, users may start to download
new segments at different time. Second, (12) involves both
discrete variables (e.g., u and z) and continuous variables (e.g.,
ts and te), hence is a complicated mixed-integral optimization
problem. Third, (12) involves the integral operation (C.2),
which makes it even more challenging to solve. Hence, in
the next section, we will focus on finding upper-bound and
lower-bound for this performance bound W ∗.

IV. PERFORMANCE BOUND ANALYSIS

In this section, we propose a virtual time-slotted download
operation scheme, under which the problem can be formulated
as an linear programming, hence can be solved by many classic
methods. We will show that the solution of (12) under the
segmented operation scheme (i.e., the theoretical performance
bound of the proposed crowdsourced system) is bounded
by the solutions under this virtual time-slotted system. It is
important to note that this time-slotted operation scheme
is only used for characterizing the theoretical performance
bound, but not for the practical implementation.
A. Time-Slotted Download Operation

To model the time-slotted operation scheme, we divide the
whole time period [0, T ] into multiple time slots, each with the
same length (e.g., 10 seconds). For convenience, we normalize
the length of each slot to be one. Hence, there is a set of T
time slots, denoted by T = {1, 2, ..., T}, with the τ -th slot
corresponding to time interval [τ − 1, τ ].

Under the time-slotted operation scheme, each video is
downloaded slot by slot in a synchronized manner, rather than
segment by segment under the segmented operation. Thus, in

6Note that without complete (future) network information, we cannot
formulate this offline social welfare maximization problem. In this case, we
need to design online algorithms, where the downloading operation of each
user is performed in an online and distributed manner.
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this case, we can focus on the segments that each user down-
loads in each time slot, instead of the segment downloading
sequence. Moreover, to guarantee the synchronous operation,
we require that each segment must be completely downloaded
within one time slot. Namely, users cannot download a seg-
ment across multiple time slots.

For clarity, we illustrate the difference between the seg-
mented operation and the time-slotted operation in Figure 2.
Blue blocks denote the user 1’s data and orange blocks denote
the user 2’s data. Under the segmented operation scheme (left),
users start to download data at different times, while under the
time-slotted operation scheme (right), users are synchronized,
and download data at the beginning of each time slot.

1) Downloading Vector: With the time-slotted operation, the
downloading operation of each user n can be characterized by
a downloading vector:
Kn ,

{
κzn,m(τ), ∀τ ∈ T ,m ∈ N , z ∈ {1, ..., Z}

}
, (13)

where each element κzn,m(τ) is a non-negative integer, denot-
ing the total number of segments with a bitrate level z that
user n downloads for user m in time slot τ .

Given the downloading vector Kn, we can derive the total
amount of data that user n downloads in each time slot τ :

xDL
n (τ) =

N∑
m=1

xn,m(τ) =
N∑
m=1

Z∑
z=1

κzn,m(τ) · βm ·Rzm, (14)

where xn,m(τ) ,
∑Z
z=1 κ

z
n,m(τ) · βm · Rzm is the amount of

data for user m in slot t. Then, we can define the link capacity
constraint and encounter constraint for a feasible Kn:

C̃.2 : xDL
n (τ) ≤ Hn(τ),

C̃.3 : en,m(t) = 1, t ∈ [τ − 1, τ ], if xn,m(τ) > 0,

where Hn(τ) =
∫ τ
τ−1 hn(t)dt is the aggregate cellular link

capacity (in Mbps) of user n in time slot τ . Note that with the
time-slotted operation, we do not need to consider the timing
constraint (C.1), as the operation is already slot by slot.

2) Receiving Vector: Given the feasible downloading vector
of all users, i.e.,Kn,∀n ∈ N , we can derive the total playback
time that user m receives in each time slot τ :

yRE
m (τ) =

N∑
n=1

yn,m(τ) =
N∑
n=1

Z∑
z=1

κzn,m(τ) · βm, (15)

where yn,m(τ) ,
∑Z
z=1 κ

z
n,m(τ) · βm is the total playback

time that user m receives from user n in slot τ .
Let qm(τ) denote the buffer level (in seconds) of user m

at the end of time slot τ . Then, we have the following buffer
update rule for user m:7

qm(τ) = [qm(τ − 1)− 1]
+
+ yRE

m (τ). (16)

7Here one time unit of video is played back during time slot τ , and yRE
m(τ)

is the playback time of the newly received segments in slot τ .

Similarly, we have the following buffer constraint:
C̃.4 : 0 ≤ qm(τ) ≤ Qm, ∀τ = 1, ..., T.

3) User Payoff: Now we define the user payoff and social
welfare under the time-slotted operation.

(i) Video Quality: Similar as (5), the value that user n
achieves from all received segments is:

Ṽn ,
T∑
τ=1

N∑
m=1

Z∑
z=1

κzm,n(τ) · βn · gn(Rzn). (17)

(ii) Quality Fluctuation: Without loss of generality, we
assume that all the received segments of each user n in each
time slot τ are sorted in the ascending order of bitrate. Hence,
quality degradation only occurs between two successive time
slots, while never occurs within a time slot. Let rH

n(τ) and
rL
n(τ) denote the highest bitrate and lowest bitrate that user n

receives in slot τ . Then, similar as (6), the value loss of user
n induced by quality degradation is

L̃QDEG
n ,

T∑
τ=2

φQDEG
n · [rH

n(τ − 1)− rL
n(τ)]

+
, (18)

(iii) Rebuffering: By the buffer update rule in (16), a
rebuffering occurs in time slot τ when

qm(τ − 1) < 1,

with a rebuffering time 1 − qm(τ − 1). Then, similar as (7),
the value loss of user n induced by rebuffering is

L̃REBUF
n ,

T∑
τ=2

φREBUF
n · [1− qm(τ − 1)]

+
. (19)

(iv) Energy Consumption for Video Downloading (via Cel-
lular and Interent): The energy consumption of user n for
video downloading on cellular link (and Internet) is

ẼCELL
n ,

T∑
τ=1

(
cTIME
n · x

DL
n (τ)

Hn(τ)
+ cDATA

n · xDL
n (τ)

)
, (20)

where xDL
n (τ)
Hn(τ)

is the actual downloading time in time slot τ .
(v) Energy Consumption for Video Exchanging (via WiFi):

The energy consumption of user n for video exchanging on
the local WiFi link is

ẼWIFI
n ,

T∑
τ=1

N∑
m=1,m6=n

(wTIME
n · 0 + wDATA

n · xn,m(τ)) . (21)

Based on the above, the payoff of each user n is
P̃n(K1, ...,KN ) , Ṽn−L̃QDEG

n −L̃REBUF
n −ẼCELL

n −ẼWIFI
n . (22)

4) Problem Formulation under Time-Slotted Operation:
Now we can define the social welfare maximization problem
under the time-slotted download operation as follows:

max
{Kn,n∈N}

W̃ ,
N∑
n=1

P̃n(K1, ...,KN ),

s.t. C̃.2 ∼ C̃.4.

(23)

Similar to (12), this is an offline optimization problem and
requires the complete network information. Moreover, (23) is
an integer programming, and can be solved by many classic
methods. Hence, we skip the detailed derivations. For notation
convenience, we denote the solution of (23) by W̃ ∗.
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B. Performance Bound

Now we characterize the theoretical performance bound W ∗

under the segmented operation, by using the solution W̃ ∗ of
(23) under the virtual time-slotted operation.

For convenience, we denote β , (β1, ..., βN ) as the vector
consisting of all users’ segment lengths, and denote W ∗(β) and
W̃ ∗(β) as the solutions of (12) and (23) under β, respectively.
We refer to a vector β as an integer multiple of another vector
β′, if each element βn in β is an integer multiple of the
corresponding element β′n in β′. For example, β = (1, ..., N)
is an integer multiple of β′ = (0.5, ..., N/2).

Proposition 1. If β is an integer multiple of β′, then

W ∗(β) ≤W
∗
(β′), and W̃ ∗(β) ≤ W̃

∗
(β′).

This proposition can be proved by showing that in both seg-
mented and time-slotted operation schemes, any downloading
operation under β can be equivalently achieved under β′.

Proposition 2. If β → 0 (i.e., βn → 0,∀n ∈ N ), then

W ∗(β) = W̃ ∗(β).

This proposition can be proved by showing that with
infinitely small segment lengths β → 0, any downloading
operation under the time-slotted operation can be equivalently
achieved under the segmented operation, and vise versa.

Proposition 3. If β � 0 is a finite vector (i.e., each element
βn ≥ 0 is a finite number), then

W ∗(β) ≥ W̃
∗
(β).

This proposition can be proved by showing that with finite
segment lengths β � 0, any downloading operation under the
time-slotted operation can be equivalently achieved under the
segmented operation, but not vise versa.

Based on the above, we have the following theorem.

Theorem 1. Given a segment length vector β, the theoretical
performance bound W ∗(β) is bounded by:

W̃ ∗(β) ≤W
∗
(β) ≤ W̃

∗
(β′→0).

Intuitively, this theorem states that with any β, the theoret-
ical performance bound W ∗(β) of our proposed crowdsourced
system is (a) lower-bounded by W̃ ∗(β) (i.e., the optimal per-
formance of the virtual time-slotted system with the same
segment length vector β), and (b) upper-bounded by W̃ ∗(β′→0)

(i.e., the optimal performance of the virtual time-slotted system
with infinitely small segment lengths β′ → 0). Therefore, the
performance of the virtual time-slotted system under different
β characterizes the theoretical performance region of our
proposed crowdsourced system.

V. CONCLUSION

In this work, we proposed a crowdsourced streaming frame-
work for multi-user cooperative video streaming over mobile
wireless networks, and analyzed the theoretical performance
bound of the proposed crowdsourced streaming system. There
are two important directions for the future extension of this

work. First, it is important to study the online scheduling
algorithms for the practical implementation of the proposed
crowdsourced streaming system in the scenario without com-
plete future and global network information. Our performance
bound analysis in this work can serve as a benchmark, and
hence is an important first step towards the future online algo-
rithm design for the crowdsourced streaming system. Second,
incentive is a very important issue for a crowdsourced system,
and is necessary for motivating video users participating the
crowdsourced system to help others. Hence, it is also important
to study the incentive issue in such a crowdsourced system.
More specifically, in the complete information scenario, this
can be achieved by a Nash bargaining between the receiver and
the downloader (in each segment downloading), with which
each of them can achieve a welfare no worse than that in
the non-cooperative system. In the incomplete information
scenario, an incentive compatible mechanism (e.g., auction)
is necessary to elicit the private information of users first, and
then divide the generated social welfare properly among the
receiver and the downloader.
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